cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A152762 Sum of proper divisors of Catalan number A000108(n).

Original entry on oeis.org

0, 0, 1, 1, 10, 54, 204, 243, 1594, 4210, 18484, 62174, 275828, 1131980, 7434360, 10522755, 72469530, 268486410, 1442238420, 4284331050, 18146556060, 62021100660, 248289237960, 798007353390, 2832660378756, 11922780597588
Offset: 0

Views

Author

Omar E. Pol, Dec 14 2008

Keywords

Examples

			a(4)=10 because the proper divisors of A000108(4)=14 are 1,2 and 7. - _Emeric Deutsch_, Dec 24 2008
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(sigma(binomial(2*n, n)/(n+1))-binomial(2*n, n)/(n+1), n = 0 .. 27); # Emeric Deutsch, Dec 24 2008
  • Mathematica
    DivisorSigma[1,#]-#&/@CatalanNumber[Range[0,30]] (* Harvey P. Dale, Dec 05 2015 *)

Formula

a(n) = A001065(A000108(n)).
a(n) = sigma(binomial(2n,n)/(n+1)) - binomial(2n,n)/(n+1), where sigma(m) is the sum of the divisors of m. - Emeric Deutsch, Dec 24 2008

Extensions

Extended by Emeric Deutsch, Dec 24 2008

A152763 Number of divisors of Catalan number A000108(n).

Original entry on oeis.org

1, 1, 2, 2, 4, 8, 12, 8, 16, 16, 24, 32, 48, 72, 192, 96, 192, 256, 576, 512, 768, 768, 1024, 1152, 1152, 1728, 1536, 1536, 4096, 4096, 5120, 2048, 6144, 12288, 12288, 8192, 12288, 12288, 24576, 24576, 36864, 98304, 131072, 147456, 196608, 196608, 368640
Offset: 0

Views

Author

Omar E. Pol, Dec 14 2008

Keywords

Comments

From Jianing Song, Jun 16 2022: (Start)
Conjecture: a(2^k-1) < a(2^k-2) for all k >= 3. Checked up to k = 263. Note that Catalan(2^k-1) is odd and Catalan(2^k-2)/Catalan(2^k-1) = 2^(k-1)/(2^(k+1)-3). Suppose that 2^(k+1)-3 = Product_{i=1..r} (p_i)^(e_i), let r_i be the (p_i)-adic valuation of binomial(2*(2^k-1),2^k-1), then a(2^k-2)/a(2^k-1) = k * Product_{i=1..r} (e_i-r_i+1)/(e_i+1). This seems unlikely to be less than 1. Actually, it seems that a(2^k-2)/a(2^k-1) tends to infinity as n goes to infinity.
Conjecture: a(2^k-1) != a(2^k) for all k. Checked up to k = 265. Note that Catalan(2^k)/Catalan(2^k-1) = 2 * (2^(k+1)-1)/(2^k+1). Suppose that (2^(k+1)-1)/(2^k+1) = Product_{i=1..r} (p_i)^(e_i), let r_i be the (p_i)-adic valuation of binomial(2*(2^k-1),2^k-1), then a(2^k)/a(2^k-1) = 2 * Product_{i=1..r} (e_i+r_i+1)/(e_i+1). This seems unlikely to be equal to 1. Among the numbers k <= 265, the number k for which a(2^k)/a(2^k-1) is closest to 1 is k = 70, where a(2^k)/a(2^k-1) = 104/105. (End)

Crossrefs

Programs

  • Maple
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end: A152763 := proc(n) numtheory[tau](A000108(n)) ; end: for n from 0 to 80 do printf("%d,",A152763(n)) ; od: # R. J. Mathar, Dec 15 2008
  • Mathematica
    DivisorSigma[0, CatalanNumber@Range[0, 40]] (* Vladimir Reshetnikov, Nov 13 2015 *)
  • PARI
    vector(100, n, n--; numdiv(binomial(2*n, n)/(n+1))) \\ Altug Alkan, Nov 13 2015
    
  • PARI
    val(n,p) = (n - vecsum(digits(n,p)))/(p-1); \\ p-adic valuation of n!
    a(n) = my(r=1); forprime(p=2, 2*n, r*=val(2*n,p)-val(n,p)-val(n+1,p)+1); r \\ Jianing Song, Jun 16 2022

Formula

a(n) = A000005(A000108(n)).

Extensions

Extended by R. J. Mathar, Dec 15 2008

A152765 Smallest prime divisor of Catalan number A000108(n), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Omar E. Pol, Dec 15 2008, Jan 03 2009

Keywords

Comments

a(n) <> 2 iff n = 2^k - 1 (A000225). In fact for k>1, a(2^k-1): 5, 3, 3, 7, 3, 3, 7, 3, 3, 3, 3, 3, 3, ..., . (A120275) - Robert G. Wilson v, Nov 14 2015

Crossrefs

Programs

  • Magma
    [Minimum(PrimeDivisors(Catalan(n))): n in [2..100]]; // Vincenzo Librandi, Jan 04 2017
  • Mathematica
    FactorInteger[#][[1,1]]&/@CatalanNumber[Range[2,80]] (* Harvey P. Dale, Oct 08 2014 *)
  • PARI
    a(n) = if (n<=1, 1, factor(binomial(2*n, n)/(n+1))[1, 1]); \\ Michel Marcus, Nov 14 2015; corrected Jun 13 2022
    
  • PARI
    A152765(n) = if(n<2,1,my(c=binomial(2*n, n)/(n+1)); forprime(p=2, oo, if(!(c%p),return(p)))); \\ Antti Karttunen, Jan 12 2019
    

Formula

a(n) = A020639(A000108(n)). - Michel Marcus, Nov 14 2015

Extensions

Terms a(0) = a(1) = 1 prepended and more terms added by Antti Karttunen, Jan 12 2019

A152981 Sum of divisors of Motzkin number A001006(n).

Original entry on oeis.org

1, 1, 3, 7, 13, 32, 72, 128, 360, 1008, 3836, 9408, 15512, 66960, 252720, 785148, 1137960, 3340800, 13072776, 42465024, 69530400, 238761600, 678562560, 2412043920, 5270534880, 10943277120, 44922182340, 117229255200, 209990825568, 623486730240, 1698651339840, 7019676332760, 18578092462280
Offset: 0

Views

Author

Omar E. Pol, Dec 20 2008

Keywords

Crossrefs

Programs

  • Maple
    A152981 := proc(n) numtheory[sigma](A001006(n)) ; end proc:
    seq(A152981(n),n=0..40) ; # R. J. Mathar, Jul 08 2011
  • Mathematica
    mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; Table[DivisorSigma[1, mot[n]], {n, 0, 32}] (* Amiram Eldar, Nov 26 2019 *)

Formula

a(n) = sigma(A001006(n)) = A000203(A001006(n)).

A152766 Largest proper divisor of the Catalan number A000108(n).

Original entry on oeis.org

1, 1, 7, 21, 66, 143, 715, 2431, 8398, 29393, 104006, 371450, 1337220, 3231615, 17678835, 64822395, 238819350, 883631595, 3282060210, 12233133510, 45741281820, 171529806825, 644952073662, 2430973200726, 9183676536076, 34766775458002, 131873975875180
Offset: 2

Views

Author

Omar E. Pol, Dec 15 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Divisors[CatalanNumber[#]][[-2]]&/@Range[2,40] (* Harvey P. Dale, Jun 13 2011 *)

Formula

a(n) = A032742(A000108(n)). - Amiram Eldar, Dec 01 2019

Extensions

Edited and extended by N. J. A. Sloane, Dec 19 2008
Showing 1-5 of 5 results.