cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A355041 Numbers k such that A152763(2^k) < A152763(2^k-1).

Original entry on oeis.org

14, 18, 30, 42, 60, 70, 82, 88, 106, 126, 130, 166, 168, 196, 213, 240, 258, 280, 282, 330
Offset: 1

Views

Author

Jianing Song, Jun 16 2022

Keywords

Comments

Note that Catalan(2^k-1) is odd and that Catalan(2^k)/Catalan(2^k-1) = 2 * (2^(k+1)-1)/(2^k+1). Suppose that (2^(k+1)-1)/(2^k+1) = Product_{i=1..r} (p_i)^(e_i), let r_i be the (p_i)-adic valuation of binomial(2*(2^k-1),2^k-1), then A152763(2^k)/A152763(2^k-1) = 2 * Product_{i=1..r} (e_i+r_i+1)/(e_i+1).
Conjecture: there is no prime in this sequence. Among the primes p <= 257, the prime p for which A152763(2^p)/A152763(2^p-1) is the smallest is p = 193, where A152763(2^p)/A152763(2^p-1) = 143/140.

Examples

			14 is a term since A152763(2^14) = 4.457... * 10^721 < A152763(2^14-1) = 4.754... * 10^721. Note that Catalan(2^14)/Catalan(2^14-1) = 2 * 32767/16385, 32767/16385 = (7*31*151)/(5*29*113). We have v(N,5) = v(N,31) = v(N,113) = v(N,151) = 1, v(N,7) = 3, v(N,29) = 2 for N = binomial(2*(2^14-1),2^14-1), so A152763(2^14)/A152763(2^14-1) = 2 * ((3+1+1)/(3+1)) * ((1+1+1)/(1+1)) * ((1+1+1)/(1+1)) * ((1-1+1)/(1+1)) * ((2-1+1)/(2+1)) * ((1-1+1)/(1+1)) = 15/16 < 1.
18 is a term since A152763(2^18) = 1.178... * 10^8888 < A152763(2^18-1) = 2.121... * 10^8888. Note that Catalan(2^18)/Catalan(2^18-1) = 2 * 524287/262145, 524287/262145 = 524287/(5*13*37*109). We have v(N,5) = 5, q(N,13) = 2, v(N,37) = v(N,109) = 1, v(N,524287) = 0 for N = binomial(2*(2^18-1),2^18-1), so A152763(2^18)/A152763(2^18-1) = 2 * ((5-1+1)/(5+1)) * ((2-1+1)/(2+1)) * ((1-1+1)/(1+1)) * ((1-1+1)/(1+1)) * ((0+1+1)/(0+1)) = 5/9 < 1.
Values of A152763(2^k)/A152763(2^k-1) for known terms:
  k = 14: 15/16
  k = 18: 5/9
  k = 30: 9/11
  k = 42: 432/455
  k = 60: 64/81
  k = 70: 104/105
  k = 82: 160/243
  k = 88: 16/21
  k = 106: 38/45
  k = 126: 2275/2673
  k = 130: 3773/6400
  k = 166: 216/287
  k = 168: 27/35
  k = 196: 605/897
  k = 213: 1683/1840
  k = 240: 320/343
  k = 258: 732875/810432
		

Crossrefs

Cf. A152763, A000108, A038003 (the odd Catalan numbers).

Programs

  • PARI
    val(n,p) = (n - vecsum(digits(n,p)))/(p-1);
    q(n,p) = val(2*n,p) - 2*val(n,p);
    r(n) = my(list = factor((2^(n+1)-1)/(2^n+1)), w=#list~, rat=2, ex); for(i=1, w, ex=q(2^n-1,list[i,1]); rat*=(ex+list[i,2]+1)/(ex+1)); rat \\ A152763(2^n)/A152763(2^n-1)
    isA355041(n) = (r(n) < 1)

Extensions

a(18)-a(20) from Amiram Eldar, Jul 24 2024

A152762 Sum of proper divisors of Catalan number A000108(n).

Original entry on oeis.org

0, 0, 1, 1, 10, 54, 204, 243, 1594, 4210, 18484, 62174, 275828, 1131980, 7434360, 10522755, 72469530, 268486410, 1442238420, 4284331050, 18146556060, 62021100660, 248289237960, 798007353390, 2832660378756, 11922780597588
Offset: 0

Views

Author

Omar E. Pol, Dec 14 2008

Keywords

Examples

			a(4)=10 because the proper divisors of A000108(4)=14 are 1,2 and 7. - _Emeric Deutsch_, Dec 24 2008
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(sigma(binomial(2*n, n)/(n+1))-binomial(2*n, n)/(n+1), n = 0 .. 27); # Emeric Deutsch, Dec 24 2008
  • Mathematica
    DivisorSigma[1,#]-#&/@CatalanNumber[Range[0,30]] (* Harvey P. Dale, Dec 05 2015 *)

Formula

a(n) = A001065(A000108(n)).
a(n) = sigma(binomial(2n,n)/(n+1)) - binomial(2n,n)/(n+1), where sigma(m) is the sum of the divisors of m. - Emeric Deutsch, Dec 24 2008

Extensions

Extended by Emeric Deutsch, Dec 24 2008

A152765 Smallest prime divisor of Catalan number A000108(n), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Omar E. Pol, Dec 15 2008, Jan 03 2009

Keywords

Comments

a(n) <> 2 iff n = 2^k - 1 (A000225). In fact for k>1, a(2^k-1): 5, 3, 3, 7, 3, 3, 7, 3, 3, 3, 3, 3, 3, ..., . (A120275) - Robert G. Wilson v, Nov 14 2015

Crossrefs

Programs

  • Magma
    [Minimum(PrimeDivisors(Catalan(n))): n in [2..100]]; // Vincenzo Librandi, Jan 04 2017
  • Mathematica
    FactorInteger[#][[1,1]]&/@CatalanNumber[Range[2,80]] (* Harvey P. Dale, Oct 08 2014 *)
  • PARI
    a(n) = if (n<=1, 1, factor(binomial(2*n, n)/(n+1))[1, 1]); \\ Michel Marcus, Nov 14 2015; corrected Jun 13 2022
    
  • PARI
    A152765(n) = if(n<2,1,my(c=binomial(2*n, n)/(n+1)); forprime(p=2, oo, if(!(c%p),return(p)))); \\ Antti Karttunen, Jan 12 2019
    

Formula

a(n) = A020639(A000108(n)). - Michel Marcus, Nov 14 2015

Extensions

Terms a(0) = a(1) = 1 prepended and more terms added by Antti Karttunen, Jan 12 2019

A152983 Number of divisors of Motzkin number A001006(n).

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 4, 2, 4, 4, 6, 8, 2, 8, 24, 18, 4, 16, 8, 12, 16, 24, 48, 72, 12, 8, 6, 16, 8, 16, 8, 12, 4, 16, 64, 12, 2, 8, 8, 8, 8, 24, 96, 96, 6, 24, 72, 48, 24, 32, 128, 96, 16, 8, 8, 8, 16, 128, 60, 192, 6, 32, 32, 96, 8, 96, 512, 36, 24, 16, 24, 384, 24, 96, 144, 48, 64, 64, 32
Offset: 0

Views

Author

Omar E. Pol, Dec 20 2008

Keywords

Examples

			a(5)=4 because the Motzkin number M(5)=21 has 4 divisors: 1,3,7 and 21. - _Emeric Deutsch_, Jan 14 2009
		

Crossrefs

Programs

  • Maple
    with(numtheory): M := proc (n) options operator, arrow: (sum((-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n), j = 0 .. floor((1/3)*n)))/(n+1) end proc: seq(tau(M(n)), n = 0 .. 82); # Emeric Deutsch, Jan 14 2009
  • Mathematica
    mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; Table[DivisorSigma[0, mot[n]], {n, 0, 50}] (* Amiram Eldar, Nov 26 2019 *)

Formula

a(n) = A000005(A001006(n)).

Extensions

Extended by Emeric Deutsch, Jan 14 2009

A152766 Largest proper divisor of the Catalan number A000108(n).

Original entry on oeis.org

1, 1, 7, 21, 66, 143, 715, 2431, 8398, 29393, 104006, 371450, 1337220, 3231615, 17678835, 64822395, 238819350, 883631595, 3282060210, 12233133510, 45741281820, 171529806825, 644952073662, 2430973200726, 9183676536076, 34766775458002, 131873975875180
Offset: 2

Views

Author

Omar E. Pol, Dec 15 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Divisors[CatalanNumber[#]][[-2]]&/@Range[2,40] (* Harvey P. Dale, Jun 13 2011 *)

Formula

a(n) = A032742(A000108(n)). - Amiram Eldar, Dec 01 2019

Extensions

Edited and extended by N. J. A. Sloane, Dec 19 2008

A153788 Number of proper divisors of the Catalan number A000108(n).

Original entry on oeis.org

0, 0, 1, 1, 3, 7, 11, 7, 15, 15, 23, 31, 47, 71, 191, 95, 191, 255, 575, 511, 767, 767, 1023, 1151, 1151, 1727, 1535, 1535, 4095, 4095, 5119, 2047, 6143, 12287, 12287, 8191, 12287, 12287, 24575, 24575, 36863, 98303, 131071, 147455
Offset: 0

Views

Author

Omar E. Pol, Jan 18 2009

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, CatalanNumber@Range[0, 1000]] - 1 (* G. C. Greubel, Aug 28 2016 *)
  • PARI
    a(n)=numdiv(binomial(2*n,n)/(n+1)) - 1 \\ Charles R Greathouse IV, Aug 29 2016

Formula

a(n) = A032741(A000108(n)) = A152763(n) - 1.
Showing 1-6 of 6 results.