cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152948 a(n) = (n^2 - 3*n + 6)/2.

Original entry on oeis.org

2, 2, 3, 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 173, 192, 212, 233, 255, 278, 302, 327, 353, 380, 408, 437, 467, 498, 530, 563, 597, 632, 668, 705, 743, 782, 822, 863, 905, 948, 992, 1037, 1083, 1130, 1178, 1227, 1277, 1328, 1380
Offset: 1

Views

Author

Keywords

Comments

a(1) = 2; then add 0 to the first number, then 1, 2, 3, 4, ... and so on.
Essentially the same as A022856, A089071 and A133263. - R. J. Mathar, Dec 19 2008
First differences are A001477.
From Vladimir Shevelev, Jan 20 2014: (Start)
If we ignore the zero polygonal numbers, then for n >= 3, a(n) is the minimal k such that the k-th n-gonal number is a sum of two n-gonal numbers (see formula and example).
If the zero polygonal numbers are ignored, then for n >= 4, the a(n)-th n-gonal number is a sum of the (a(n)-1)-th n-gonal number and the (n-1)-th n-gonal number. (End)
Numbers m such that 8m - 15 is a square. - Bruce J. Nicholson, Jul 24 2017

Examples

			a(7)=17. This means that the 17th (positive) heptagonal number 697 (cf. A000566) is the smallest heptagonal number which is a sum of two (positive) heptagonal numbers. We have 697 = 616 + 81 with indices 17, 16, 6 in A000566. - _Vladimir Shevelev_, Jan 20 2014
		

Crossrefs

Programs

  • Magma
    [ (n^2-3*n+6)/2: n in [1..60] ];
    
  • Mathematica
    Array[(#^2 - 3 # + 6)/2 &, 54] (* or *) Rest@ CoefficientList[Series[-x (2 - 4 x + 3 x^2)/(x - 1)^3, {x, 0, 54}],x] (* Michael De Vlieger, Mar 25 2020 *)
  • PARI
    a(n)=(n^2-3*n+6)/2 \\ Charles R Greathouse IV, Sep 28 2015
  • Sage
    [2+binomial(n,2) for n in range(0, 54)] # Zerinvary Lajos, Mar 12 2009
    

Formula

a(n) = a(n-1) + n-2 (with a(1)=2). - Vincenzo Librandi, Nov 26 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -x*(2 - 4*x + 3*x^2) / (x-1)^3. - R. J. Mathar, Oct 30 2011
Sum_{n>=1} 1/a(n) = 1/2 + 2*Pi*tanh(sqrt(15)*Pi/2)/sqrt(15). - Amiram Eldar, Dec 13 2022
E.g.f.: exp(x)*(6 - 2*x + x^2)/2 - 3. - Stefano Spezia, Nov 14 2024