A105760
Nonnegative numbers k such that 2k+7 is prime.
Original entry on oeis.org
0, 2, 3, 5, 6, 8, 11, 12, 15, 17, 18, 20, 23, 26, 27, 30, 32, 33, 36, 38, 41, 45, 47, 48, 50, 51, 53, 60, 62, 65, 66, 71, 72, 75, 78, 80, 83, 86, 87, 92, 93, 95, 96, 102, 108, 110, 111, 113, 116, 117, 122, 125, 128, 131, 132, 135, 137, 138, 143, 150, 152, 153, 155, 162
Offset: 1
If n=0, then 2*0 + 7 = 7 (prime).
If n=15, then 2*15 + 7 = 37 (prime).
If n=27, then 2*27 + 7 = 61 (prime).
Cf.
A153053 (Numbers n such that 2n+7 is not a prime)
-
Filtered([0..200], k-> IsPrime(2*k+7) ); # G. C. Greubel, May 21 2019
-
[n: n in [0..200]| IsPrime(2*n+7)]; // Vincenzo Librandi, Dec 21 2010
-
(Prime[Range[4,100]]-7)/2 (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)
Select[Range[0, 200], PrimeQ[2 # + 7] &] (* Vincenzo Librandi, May 20 2014 *)
-
is(n)=isprime(2*n+7) \\ Charles R Greathouse IV, Feb 16 2017
-
[n for n in (0..200) if is_prime(2*n+7) ] # G. C. Greubel, May 21 2019
A153144
Numbers n such that 2*n+19 is not a prime.
Original entry on oeis.org
1, 3, 4, 7, 8, 10, 13, 15, 16, 18, 19, 22, 23, 25, 28, 29, 31, 33, 34, 36, 37, 38, 40, 43, 46, 48, 49, 50, 51, 52, 53, 55, 57, 58, 61, 62, 63, 64, 67, 68, 70, 71, 73, 75, 76, 78, 79, 82, 83, 84, 85, 88, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101
Offset: 1
A153083
Numbers such that 2*n + 11 is not prime.
Original entry on oeis.org
2, 5, 7, 8, 11, 12, 14, 17, 19, 20, 22, 23, 26, 27, 29, 32, 33, 35, 37, 38, 40, 41, 42, 44, 47, 50, 52, 53, 54, 55, 56, 57, 59, 61, 62, 65, 66, 67, 68, 71, 72, 74, 75, 77, 79, 80, 82, 83, 86, 87, 88, 89, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 110, 112
Offset: 1
Distribution of the terms in the following triangular array:
*
2,7;
5,12,19;
8,17,26,35;
11,22,33,44,55;
14,27,40,53,66,79;
17,32,47,62,77,92,107;
20,37,54,71,88,105,122,139;
23,42,61,80,99,118,137,156,175;
26,47,68,89,110,131,152,173,194,215;
29,52,75,98,121,144,167,190,213,236,259;
32,57,82,107,132,157,182,207,232,257,282,307;
where * marks the decimal values of (2*h*k + k + h - 5) with h >= k >= 1. - _Vincenzo Librandi_, Jan 16 2013
A154684
Triangle read by rows where T(m,n)=2mn + m + n - 3, 1<=n<=m.
Original entry on oeis.org
1, 4, 9, 7, 14, 21, 10, 19, 28, 37, 13, 24, 35, 46, 57, 16, 29, 42, 55, 68, 81, 19, 34, 49, 64, 79, 94, 109, 22, 39, 56, 73, 90, 107, 124, 141, 25, 44, 63, 82, 101, 120, 139, 158, 177, 28, 49, 70, 91, 112, 133, 154, 175, 196, 217, 31, 54, 77, 100, 123, 146, 169
Offset: 1
Triangle begins:
1;
4, 9;
7, 14, 21;
10, 19, 28, 37;
13, 24, 35, 46, 57;
16, 29, 42, 55, 68, 81;
19, 34, 49, 64, 79, 94, 109;
22, 39, 56, 73, 90, 107, 124, 141;
25, 44, 63, 82, 101, 120, 139, 158, 177;
28, 49, 70, 91, 112, 133, 154, 175, 196, 217; etc.
-
[(2*n*k + n + k - 3): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 19 2012
-
t[n_,k_]:=2 n*k + n + k - 3; Table[t[n, k], {n, 20}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 19 2012 *)
A155723
Numbers k such that 2*k + 9 is not prime.
Original entry on oeis.org
0, 3, 6, 8, 9, 12, 13, 15, 18, 20, 21, 23, 24, 27, 28, 30, 33, 34, 36, 38, 39, 41, 42, 43, 45, 48, 51, 53, 54, 55, 56, 57, 58, 60, 62, 63, 66, 67, 68, 69, 72, 73, 75, 76, 78, 80, 81, 83, 84, 87, 88, 89, 90, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 108, 111, 113, 114
Offset: 1
Distribution of the terms in the following triangular array:
0;
3, 8;
6, 13, 20;
9, 18, 27, 36;
12, 23, 34, 45, 56;
15, 28, 41, 54, 67, 80;
18, 33, 48, 63, 78, 93, 108;
21, 38, 55, 72, 89, 106, 123, 140;
24, 43, 62, 81, 100, 119, 138, 157, 176;
27, 48, 69, 90, 111, 132, 153, 174, 195, 216;
30, 53, 76, 99, 122, 145, 168, 191, 214, 237, 260;
33, 58, 83, 108, 133, 158, 183, 208, 233, 258, 283, 308;
36, 63, 90, 117, 144, 171, 198, 225, 252, 279, 306, 333, 360;
etc.
the values of (2*h*k + k + h - 4) with h >= k >= 1. - _Vincenzo Librandi_, Jan 16 2013
A301451
Numbers congruent to {1, 7} mod 9.
Original entry on oeis.org
1, 7, 10, 16, 19, 25, 28, 34, 37, 43, 46, 52, 55, 61, 64, 70, 73, 79, 82, 88, 91, 97, 100, 106, 109, 115, 118, 124, 127, 133, 136, 142, 145, 151, 154, 160, 163, 169, 172, 178, 181, 187, 190, 196, 199, 205, 208, 214, 217, 223, 226, 232, 235, 241, 244, 250, 253, 259, 262, 268
Offset: 1
Cf.
A274406: numbers congruent to {0, 8} mod 9.
Cf.
A193910: numbers congruent to {2, 6} mod 9.
Subsequence of
A016777,
A026225,
A029739,
A033627,
A047236,
A047259,
A055047,
A055054,
A056991,
A153053,
A187318,
A242660.
-
a := [1,7,10];; for n in [4..60] do a[n] := a[n-1] + a[n-2] - a[n-3]; od; a;
-
&cat [[9*n+1, 9*n+7]: n in [0..40]];
-
Table[2 (2 n - 1) + (2 n - 3 (1 - (-1)^n))/4, {n, 1, 60}]
{#+1,#+7}&/@(9*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{1,7,10},60] (* Harvey P. Dale, Nov 08 2020 *)
-
Vec(x*(1 + 6*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Mar 22 2018
-
[2*(2*n-1)+(2*n-3*(1-(-1)**n))/4 for n in range(1,70)]
-
[n for n in (1..300) if n % 9 in (1,7)]
A153082
Numbers k such that 2*k + 13 is not prime.
Original entry on oeis.org
1, 4, 6, 7, 10, 11, 13, 16, 18, 19, 21, 22, 25, 26, 28, 31, 32, 34, 36, 37, 39, 40, 41, 43, 46, 49, 51, 52, 53, 54, 55, 56, 58, 60, 61, 64, 65, 66, 67, 70, 71, 73, 74, 76, 78, 79, 81, 82, 85, 86, 87, 88, 91, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 106, 109, 111
Offset: 1
Distribution in the following triangular array:
*;
1, 6;
4, 11,18;
7, 16,25,34;
10,21,32,43,54;
13,26,39,52,65,78;
16,31,46,61,76,91,106;
19,36,53,70,87,104,121,138;
22,41,60,79,98,117,136,155,174;
25,46,67,88,109,130,151,172,193,214;
28,51,74,97,120,143,166,189,212,235,258;
31,56,81,106,131,156,181,206,231,256,281,306;
34,61,88,115,142,169,196,223,250,277,304,331,358; etc.
where * marks the negative values of (2*h*k + k + h - 6) with h >= k >= 1. -
_Vincenzo Librandi_, Jan 15 2013
A153086
Numbers n such that 4*n+7 is not prime.
Original entry on oeis.org
2, 5, 7, 8, 11, 12, 14, 17, 20, 21, 22, 23, 26, 27, 28, 29, 32, 34, 35, 37, 38, 41, 42, 44, 45, 47, 49, 50, 52, 53, 56, 57, 59, 60, 62, 63, 65, 67, 68, 70, 71, 72, 73, 74, 77, 78, 79, 80, 82, 83, 84, 86, 87, 89, 91, 92, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 107
Offset: 1
*;
2, *;
*, 7, *;
5, *, 14, *;
*, 12, *, 23, *;
8, *, 21, *, 34, *;
*, 17, *, 32, *, 47, *; etc.
where * marks the non-integer values of (2*n*k + k + n - 3)/2 with n >= k >= 1. - _Vincenzo Librandi_, Nov 21 2012
Showing 1-8 of 8 results.
Comments