A153080 a(n) = 13*n + 2.
2, 15, 28, 41, 54, 67, 80, 93, 106, 119, 132, 145, 158, 171, 184, 197, 210, 223, 236, 249, 262, 275, 288, 301, 314, 327, 340, 353, 366, 379, 392, 405, 418, 431, 444, 457, 470, 483, 496, 509, 522, 535, 548, 561, 574, 587, 600, 613, 626, 639, 652, 665, 678, 691
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
I:=[2, 15]; [n le 2 select I[n] else 2*Self(n-1)-1*Self(n-2): n in [1..60]]; // Vincenzo Librandi, Feb 25 2012
-
Maple
A153080:=n->13*n+2: seq(A153080(n), n=0..100); # Wesley Ivan Hurt, Oct 05 2017
-
Mathematica
Range[2, 1000, 13] (* Vladimir Joseph Stephan Orlovsky, May 29 2011 *) LinearRecurrence[{2,-1},{2,15},30] (* Vincenzo Librandi, Feb 25 2012 *)
Formula
G.f.: (2+11*x)/(1-x)^2. - R. J. Mathar, Jan 05 2011
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 25 2012
E.g.f.: exp(x)*(2 + 13*x). - Elmo R. Oliveira, Apr 04 2025
Comments