A153158 a(n) = A007916(n)^2.
4, 9, 25, 36, 49, 100, 121, 144, 169, 196, 225, 289, 324, 361, 400, 441, 484, 529, 576, 676, 784, 841, 900, 961, 1089, 1156, 1225, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481
Offset: 1
Keywords
Examples
2^2 = 4, 3^2 = 9, 4^2 = 16 = 2^4 is not in the sequence, 5^2 = 25, 6^2 = 36, ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a153158 n = a153158_list !! (n-1) a153158_list = filter ((== 2) . foldl1 gcd . a124010_row) [2..] -- Reinhard Zumkeller, Apr 13 2012
-
Maple
q:= n-> is(igcd(seq(i[2], i=ifactors(n)[2]))=2): select(q, [i^2$i=2..60])[]; # Alois P. Heinz, Nov 26 2024
-
Mathematica
Select[Range[2,100],GCD@@Last/@FactorInteger@#==1&]^2
-
Python
from sympy import mobius, integer_nthroot def A153158(n): def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return m**2 # Chai Wah Wu, Aug 13 2024
Formula
GCD(exponents in prime factorization of a(n)) = 2, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
Sum_{n>=1} 1/a(n) = zeta(2) - 1 - Sum_{k>=2} mu(k)*(1 - zeta(2*k)) = 0.5444587396... - Amiram Eldar, Jul 02 2022
Intersection of A000290 and A378287. Squares that are not of the form m^k for some k>=3. - Chai Wah Wu, Nov 21 2024
Extensions
Edited by Ray Chandler, Dec 22 2008
Comments