A153231 a(n) = 2^n * binomial(3n,n)/(2n+1).
1, 2, 12, 96, 880, 8736, 91392, 992256, 11075328, 126297600, 1465052160, 17233182720, 205074874368, 2464404045824, 29864206663680, 364535993597952, 4477993284993024, 55316387638149120, 686720560048373760, 8563155161736806400, 107206525476085432320
Offset: 0
References
- Bruce E. Sagan, Proper partitions of a polygon and k-Catalan numbers, Ars Combinatoria, 88 (2008), 109-124.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..889
- CombOS - Combinatorial Object Server, Generate k-ary trees and dissections
- Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- Bruce E. Sagan, Proper partitions of a polygon and k-Catalan numbers, arXiv:math/0407280 [math.CO], 2004.
- Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017.
Programs
-
Magma
[2^n*Binomial(3*n,n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Sep 08 2015
-
Mathematica
Table[2^n Binomial[3n, n]/(2n+1), {n, 0, 25}] (* Vincenzo Librandi, Sep 08 2015 *)
-
PARI
a(n) = 2^n*binomial(3*n,n)/(2*n+1); \\ Altug Alkan, Sep 24 2018
-
SageMath
[2^n*binomial(3*n,n)/(2*n+1) for n in range(31)] # G. C. Greubel, Mar 08 2023
Formula
a(n) = 2^n*A001764(n). - R. J. Mathar, Oct 06 2012
D-finite with recurrence n*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Nov 16 2012
a(n) = (n+1)*A000309(n). - Johannes W. Meijer, Aug 22 2013
G.f.: sqrt(2)/sqrt(3*x)*sin(1/3*asin(sqrt(27*x/2))). - Vladimir Kruchinin, Sep 08 2015
E.g.f.: Hypergeometric2F2(1/3,2/3; 1,3/2; 27*x/2). - Ilya Gutkovskiy, Nov 23 2017
Extensions
More terms from N. J. A. Sloane, Dec 21 2008
Comments