cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153231 a(n) = 2^n * binomial(3n,n)/(2n+1).

Original entry on oeis.org

1, 2, 12, 96, 880, 8736, 91392, 992256, 11075328, 126297600, 1465052160, 17233182720, 205074874368, 2464404045824, 29864206663680, 364535993597952, 4477993284993024, 55316387638149120, 686720560048373760, 8563155161736806400, 107206525476085432320
Offset: 0

Views

Author

Yidong Sun (sydmath(AT)yahoo.com.cn), Dec 21 2008

Keywords

Comments

a(n) is also the number of rooted generalized noncrossing trees on n+1 vertices.
The series reversion of y = x +2*x^3 is x = y -2*y^3 +12*y^5 -96*y^7 +880*y^9 -8736*y^11 +... - R. J. Mathar, Sep 29 2012
Lattice paths in the 1st quadrant from (0,0) to (3n,0) using steps D(1,-1) and two types of U(1,2). - David Scambler, Jun 22 2013
From Torsten Muetze, May 08 2024: (Start)
a(n) also counts ternary trees with n nodes that are colored red or blue.
a(n) also counts triangulations of a convex (2n+2)-gon whose points are colored red and blue alternatingly, and that do not have monochromatic triangles (i.e., every triangle has at least one red point and at least one blue point). (End)

References

  • Bruce E. Sagan, Proper partitions of a polygon and k-Catalan numbers, Ars Combinatoria, 88 (2008), 109-124.

Crossrefs

Cf. A369510 (colorful triangulations with an odd number of points).

Programs

  • Magma
    [2^n*Binomial(3*n,n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Sep 08 2015
    
  • Mathematica
    Table[2^n Binomial[3n, n]/(2n+1), {n, 0, 25}] (* Vincenzo Librandi, Sep 08 2015 *)
  • PARI
    a(n) = 2^n*binomial(3*n,n)/(2*n+1); \\ Altug Alkan, Sep 24 2018
    
  • SageMath
    [2^n*binomial(3*n,n)/(2*n+1) for n in range(31)] # G. C. Greubel, Mar 08 2023

Formula

a(n) = 2^n*A001764(n). - R. J. Mathar, Oct 06 2012
D-finite with recurrence n*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Nov 16 2012
a(n) = (n+1)*A000309(n). - Johannes W. Meijer, Aug 22 2013
G.f.: sqrt(2)/sqrt(3*x)*sin(1/3*asin(sqrt(27*x/2))). - Vladimir Kruchinin, Sep 08 2015
E.g.f.: Hypergeometric2F2(1/3,2/3; 1,3/2; 27*x/2). - Ilya Gutkovskiy, Nov 23 2017

Extensions

More terms from N. J. A. Sloane, Dec 21 2008