cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A367389 Expansion of g.f. A(x) = B(x^2)/(1 - 2*x*B(x^2)) where B(x) = 1 + 2*x*B(x)^3 is the g.f. of A153231.

Original entry on oeis.org

1, 2, 6, 16, 52, 152, 512, 1568, 5392, 16992, 59232, 190336, 669952, 2183680, 7742464, 25512448, 90974464, 302368256, 1083175424, 3625435136, 13036688384, 43889186816, 158323564544, 535639556096, 1937483350016, 6582584115200, 23865932414976, 81381420826624, 295661476642816
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2023

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 16*x^3 + 52*x^4 + 152*x^5 + 512*x^6 + 1568*x^7 + 5392*x^8 + 16992*x^9 + 59232*x^10 + ...
where
1/A(x) = 1 - 2*x - 2*x^2 - 8*x^4 - 56*x^6 - 480*x^8 - 4576*x^10 - 46592*x^12 - ... - 2^n*binomial(3*n-1,n)/(3*n-1) * x^(2*n) - ...
		

Crossrefs

Cf. A153231.

Programs

  • Mathematica
    CoefficientList[1/(-2*x + x/InverseSeries[Series[x - 2*x^3, {x, 0, 30}], x]), x] (* Vaclav Kotesovec, Dec 24 2023 *)
  • PARI
    {a(n) = my(A = 1/(-2*x + x/serreverse(x - 2*x^3 + O(x^(n+2))))); polcoeff(A,n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A;
    A[#A] = polcoeff( (1 + (m+1)*x*Ser(A))^m / Ser(A)^m , m-1)/m - (m-1)^(m-2) ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = B(x^2)/(1 - 2*x*B(x^2)) where B(x) = 1 + 2*x*B(x)^3 is the g.f. of A153231.
(2) A(x) = 1/(1-2*x - Sum_{n>=1} 2^n * binomial(3*n-1,n)/(3*n-1) * x^(2*n) ).
(3) A(x) = 1/(-2*x + x/Series_Reversion( x - 2*x^3 )).
(4) [x^(n-1)] (1 + (n+1)*x*A(x))^n / A(x)^n = n*(n-1)^(n-2) for n > 1.
(5) [x^(n-1)] (1 + n*x*A(x))^n / A(x)^n = -n*(n-2)^(n-2) for n > 1.
(6) [x^(n-1)] (1 + (n-2)*x*A(x))^n / A(x)^n = -n*(5*n-14)*(n-4)^(n-3) for n >= 1.
a(n) ~ (15*sqrt(3/2)/2 + 9 + (15*sqrt(3/2)/2 - 9)*(-1)^n) * 3^(3*n/2) / (sqrt(Pi) * n^(3/2) * 2^(n/2)). - Vaclav Kotesovec, Dec 24 2023

A349253 G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - 2 * x * A(x)^2)).

Original entry on oeis.org

1, 3, 19, 169, 1753, 19795, 236035, 2923857, 37256881, 485202307, 6429346899, 86405569657, 1174917167881, 16134949855251, 223460304878467, 3117521211476641, 43771643214792033, 618045740600046211, 8770377489446217235, 125013010654218317385, 1789104455068153153849
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1/((1 - x) (1 - 2 x A[x]^2)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = 1 + 2 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 20}]
    Table[Sum[Binomial[n + k, n - k] 2^k Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 20}]
    a[n_] := HypergeometricPFQ[{1/3,2/3,-n,n + 1}, {1/2,1,3/2}, -(3/2)^3];
    Table[a[n], {n, 0, 20}] (* Peter Luschny, Nov 12 2021 *)

Formula

a(n) = 1 + 2 * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n+k,n-k) * 2^k * binomial(3*k,k) / (2*k+1).
a(n) = hypergeom([1/3, 2/3, -n, n + 1], [1/2, 1, 3/2], -(3/2)^3). - Peter Luschny, Nov 12 2021
a(n) ~ sqrt(315 + 31*sqrt(105)) * (31 + 3*sqrt(105))^n / (9 * sqrt(Pi) * 2^(2*n + 5/2) * n^(3/2)). - Vaclav Kotesovec, Nov 13 2021

A228484 a(n) = 2^n*(3*n)!/(n!*(2*n)!).

Original entry on oeis.org

1, 6, 60, 672, 7920, 96096, 1188096, 14883840, 188280576, 2399654400, 30766095360, 396363202560, 5126871859200, 66538909237248, 866061993246720, 11300615801536512, 147773778404769792, 1936073567335219200, 25408660721789829120, 333963051307735449600
Offset: 0

Views

Author

Johannes W. Meijer, Aug 22 2013

Keywords

Comments

Oblique diagonal of the Pell-Jacobsthal triangle A013609. Its mirror diagonal is A006588.

Crossrefs

Programs

  • Magma
    [2^n*Factorial(3*n)/(Factorial(n)*Factorial(2*n)): n in [0..20]]; // Vincenzo Librandi, Aug 24 2013
    
  • Maple
    a := n -> 2^n*binomial(3*n, n): seq(a(n), n=0..16);
  • Mathematica
    Table[2^n (3 n)!/(n! (2 n)!), {n, 0, 20}] (* Vincenzo Librandi, Aug 24 2013 *)
  • PARI
    a(n) = 2^n*binomial(3*n, 2*n); \\ Michel Marcus, Mar 06 2022

Formula

a(n) = 2^n*A005809(n).
a(n) = A013609(3*n, n).
a(n) = A006588(n)/2^n.
a(n) = (2*n+1)*A153231(n).
Asymptotic approximation of a(n) ~ C*(13.5)^n/sqrt(n) with C = (1/2)*sqrt(3/Pi) = A137209.
Sum_{n>=0} 1/a(n) = (11*Pi - 12*log(2) + 270)/250. - Amiram Eldar, Mar 06 2022
From Karol A. Penson, Feb 26 2025: (Start)
G.f.: hypergeom([1/3,2/3],[1/2],27*z/2).
E.g.f.: hypergeom([1/3,2/3],[1/2,1],27*z/2). (End)

Extensions

More terms from Vincenzo Librandi, Aug 24 2013

A349255 G.f. A(x) satisfies A(x) = 1 / ((1 + x) * (1 - 2 * x * A(x)^2)).

Original entry on oeis.org

1, 1, 7, 47, 369, 3113, 27631, 254239, 2403361, 23201393, 227771831, 2266983119, 22822484497, 231994748633, 2377894546783, 24548520253247, 255026759000897, 2664111200687969, 27967731861910759, 294900120348032623, 3121862973452544433, 33167268461833410569
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; A[] = 0; Do[A[x] = 1/((1 + x) (1 - 2 x A[x]^2)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = (-1)^n + 2 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 21}]
    Table[Sum[(-1)^(n - k) Binomial[n + k, n - k] 2^k Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 21}]
    a[n_] := (-1)^n*HypergeometricPFQ[{1/3, 2/3, -n, n + 1}, {1/2, 1, 3/2}, (3/2)^3]; Table[a[n], {n, 0, 21}] (* Peter Luschny, Nov 12 2021 *)

Formula

a(n) = (-1)^n + 2 * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+k,n-k) * 2^k * binomial(3*k,k) / (2*k+1).
a(n) = (-1)^n*hypergeom([1/3, 2/3, -n, n + 1], [1/2, 1, 3/2], (3/2)^3). - Peter Luschny, Nov 12 2021
a(n) ~ sqrt(171 + 23*sqrt(57)) * (23 + 3*sqrt(57))^n / (9 * sqrt(Pi) * n^(3/2) * 2^(2*n + 5/2)). - Vaclav Kotesovec, Nov 13 2021

A364167 Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^3 * (1 + A(x)^3).

Original entry on oeis.org

1, 2, 18, 234, 3570, 59586, 1053570, 19392490, 367677090, 7131417282, 140834140722, 2822214963882, 57243994984722, 1172991472484610, 24245748916730658, 504935751379031082, 10584721220759172162, 223163804001804187266, 4729176407109705542994, 100676187744957784842090
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2023

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> sum(binomial(n, k)*binomial(3*n+3*k+1, n)/(3*n+3*k+1), k=0..n):
    seq(a(n), n=0..49); # Christian N. Hofmann, Jul 14 2023
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n+3*k+1, n)/(3*n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(3*n+3*k+1,n)/(3*n+3*k+1).

A217364 a(n) = 2^n*binomial(5*n, n)/(4*n+1).

Original entry on oeis.org

1, 2, 20, 280, 4560, 80960, 1520064, 29680640, 596593920, 12262581760, 256556410880, 5445566730240, 116974976102400, 2538140268625920, 55548588652625920, 1224777962595287040, 27180522769369333760, 606648758810237337600
Offset: 0

Views

Author

R. J. Mathar, Oct 01 2012

Keywords

Comments

Old name was: Series reversion of x - 2*x^5.
Regular blocks of 3 intermediate zeros have been left out of the sequence: If y = x - 2x^5, then x = y + 2*y^5 + 20*y^9 + 280*y^13 + 4560*y^17 - ...
a(n) is the number of lattice paths (Schroeder paths) from (0,0) to (n,5n) with unit steps N=(0,1), E=(1,0) and D=(1,1) staying weakly above the line y = 5x with the total number of occurrences of NE and D equal to n. - Michael D. Weiner, Aug 21 2019

Crossrefs

Cf. A153231 (x-2*x^3), A217360 (x-2*x^4).

Programs

  • Magma
    [2^n*Binomial(5*n, n)/(4*n+1): n in [0..25]]; // Michael D. Weiner, Aug 21 2019
  • Maple
    A217364 := j -> pochhammer(1/5, j)*pochhammer(2/5, j)*pochhammer(3/5, j)*pochhammer(4/5, j)*6250^j/(4*j+1)!:
    seq(A217364(n),n=0..100); # Robert Israel, May 19 2014
  • Mathematica
    Table[CoefficientList[InverseSeries[Series[x-2*x^5,{x,0,100}],x],x][[4*n-2]],{n,1,20}] (* Vaclav Kotesovec,Aug 20 2013 *)
    Table[2^n Binomial[5 n, n] / (4 n + 1), {n, 0, 20}] (* Michael D. Weiner, Aug 21 2019 *)
  • PARI
    for(n=0,20, print1(round(if(n==0, 1, 5*2^n*gamma(5*n)/(gamma(n)*gamma(4*n+2)))), ", ")) \\ G. C. Greubel, Apr 01 2017
    
  • PARI
    {my(x='x+O('x^133), v=Vec(serreverse(x - 2*x^5))); vector(#v\4, n, v[4*n-3] ) } \\ Joerg Arndt, Apr 02 2017
    
  • Sage
    A217364 = lambda n: 5*2^n*gamma(5*n)/(gamma(n)*gamma(4*n+2)) if n > 0 else 1
    [A217364(n) for n in (0..18)] # Peter Luschny, May 19 2014
    

Formula

D-finite with recurrence (4*n+1)*(4*n)*(4*n-1)*(4*n-2)*a(n) - 10*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1) = 0.
a(n) ~ 5^(5*n)/(2^(7*n+4)*sqrt(Pi/10)*n^(3/2)). - Vaclav Kotesovec, Aug 20 2013
a(n) = Gamma(n+1/5)*Gamma(n+2/5)*Gamma(n+3/5)*Gamma(n+4/5)*6250^(n+1)*sqrt(5)/ (25000*Pi^2*Gamma(4*n+2)). - Robert Israel, May 19 2014
a(n) = 5*2^n*Gamma(5*n)/(Gamma(n)*Gamma(4*n+2)) for n > 0. - Peter Luschny, May 19 2014
G.f.: F([1/5, 2/5, 3/5, 4/5], [1/2, 3/4, 5/4], 3125*x/128), where F is the generalized hypergeometric function. - Stefano Spezia, Sep 03 2019
G.f. A(x) satisfies: A(x) = 1 / (1 - 2 * x * A(x)^4). - Ilya Gutkovskiy, Nov 12 2021

Extensions

New definition and offset from Michael D. Weiner, Sep 03 2019

A348912 G.f. A(x) satisfies A(x) = (1 + 2 * x * A(x)^3) / (1 - x).

Original entry on oeis.org

1, 3, 21, 201, 2217, 26535, 335001, 4391553, 59203137, 815580507, 11430639165, 162470033625, 2336381642649, 33930648153615, 496935405133617, 7331179445170689, 108846406625097729, 1625145134034548019, 24385673680861258533, 367546405595389076649, 5561980053932228243529
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = (1 + 2 x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = a[n - 1] + 2 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(n+2*k+1, n)/(n+2*k+1)); \\ Seiichi Manyama, Jul 24 2023

Formula

a(0) = 1; a(n) = a(n-1) + 2 * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) ~ sqrt(-50 + 30*sqrt(3) + (22 - 12*sqrt(3))*(2*(sqrt(3) - 1))^(1/3) + (2*(sqrt(3) - 1))^(2/3)*(-11 + 7*sqrt(3)))/(4*sqrt(3*Pi)*(-1 + sqrt(3))^(3/2) * n^(3/2) * (1 + (3*(-1 + sqrt(3))^(1/3))/2^(2/3) - 3/(2*(-1 + sqrt(3)))^(1/3))^n). - Vaclav Kotesovec, Nov 04 2021
a(n) = Sum_{k=0..n} 2^k * binomial(n,k) * binomial(n+2*k+1,n) / (n+2*k+1). - Seiichi Manyama, Jul 24 2023

A217360 a(n) = 2^n*binomial(4*n, n)/(3*n+1).

Original entry on oeis.org

1, 2, 16, 176, 2240, 31008, 453376, 6888960, 107707392, 1721477120, 28000141312, 461964898304, 7712495058944, 130050777006080, 2211737871974400, 37892693797109760, 653389823437701120, 11330548232319664128, 197475886172892823552
Offset: 0

Views

Author

R. J. Mathar, Oct 01 2012

Keywords

Comments

Old name was: Series reversion of x - 2*x^4.
Regular blocks of 2 intermediate zeros have been removed from the sequence: If y = x - 2*x^4, then x = y + 2*y^4 + 16*y^7 + 176*y^10 + 2240*y^13 + 31008*y^16 + ...
a(n) is the number of lattice paths (Schroeder paths) from (0,0) to (n,4n) with unit steps N=(0,1), E=(1,0) and D=(1,1) staying weakly above the line y = 4x with the total number of occurrences of NE and D equal to n. - Michael D. Weiner, Jul 25 2019

Crossrefs

Cf. A153231 (x+2*x^3).

Programs

Formula

D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n)- 8*(4*n-1)*(4*n-3)*(4*n-2)*a(n-1) = 0, so a(n) = 8^n*A060706(n)/A100089(n) = 2^n*A002293(n).
a(n) = [x^(3*n)](f(x)/x) where f(x) is the reversion of x - 2*x^4.
G.f.: F([1/4, 1/2, 3/4], [2/3, 4/3], 512*x/27), where F is the generalized hypergeometric function. - Stefano Spezia, Aug 18 2019
G.f. A(x) satisfies: A(x) = 1 / (1 - 2 * x * A(x)^3). - Ilya Gutkovskiy, Nov 12 2021

Extensions

Offset decreased by 1 and name changed by Michael D. Weiner, Jul 25 2019

A217363 Series reversion of x - 3*x^3.

Original entry on oeis.org

1, 3, 27, 324, 4455, 66339, 1041012, 16953624, 283848543, 4855304025, 84482290035, 1490628232080, 26607713942628, 479621100042756, 8718235759397880, 159628084420459248, 2941328850997439439, 54501093415540789605, 1014898739548854163185
Offset: 1

Views

Author

R. J. Mathar, Oct 01 2012

Keywords

Comments

Regular zeros in the reverted sequence have been left out: If y = x - 3*x^3, then x = y + 3*y^3 + 27*y^5 + 324*y^7 + 4455*y^9 + 66339*y^11 + ...
Number of lattice paths that do not go below the x-axis from (0,0) to (3n,0) using steps D(1,-1) and three types of U(1,2). - David Scambler, Jun 22 2013

Crossrefs

Cf. A005159 (revert x-3*x^2), A153231 (revert x-2*x^3).

Programs

  • Maple
    f:= k -> (3*k-3)!*3^(k-1)/(k-1)!/(2*k-1)!:
    map(f, [$1..30]); # Robert Israel, May 07 2017
  • Mathematica
    CoefficientList[Series[2/3 Sqrt[z] Sin[ArcSin[(9 Sqrt[z])/2]/3], {z, 0, 20}], z](* Benedict W. J. Irwin, Jul 12 2016 *)

Formula

D-finite with recurrence (2*n-1)*(2*n-2)*a(n) - 9*(3*n-4)*(3*n-5)*a(n-1) = 0.
a(n) = 3^(n-1)*A001764(n-1).
From Benedict W. J. Irwin, Jul 12 2016: (Start)
G.f.: (2/3)*sqrt(x)*sin(asin(9*sqrt(x)/2)/3).
E.g.f.: x*2F2(1/3,2/3;3/2,2;81*x/4). (End)
a(n) ~ 3^(4*n - 7/2)*4^(-n)*n^(-3/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016

A369510 Expansion of (1/x) * Series_Reversion( x * ((1-x)^2-x^2)^2 ).

Original entry on oeis.org

1, 4, 28, 240, 2288, 23296, 248064, 2728704, 30764800, 353633280, 4128783360, 48827351040, 583674642432, 7041154416640, 85610725769216, 1048040981594112, 12907157115568128, 159802897621319680, 1987875305403187200, 24833149969036738560, 311409431144819589120
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2024

Keywords

Comments

a(n) also counts triangulations of a convex (2n+3)-gon whose points are colored red and blue alternatingly, and that do not have monochromatic triangles (i.e., every triangle has at least one red point and at least one blue point). - Torsten Muetze, May 08 2024

References

  • Bruce E. Sagan, Proper partitions of a polygon and k-Catalan numbers, Ars Combinatoria, 88 (2008), 109-124.

Crossrefs

Cf. A151374.
Cf. A153231 (colorful triangulations with an even number of points).

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^2-x^2)^2)/x)
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n+k+1, k)*binomial(5*n+3, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(5*n+3,n-2*k).
From Torsten Muetze, May 08 2024: (Start)
a(n) = 2^n/(n+1) * binomial(3n+1,n).
a(n) = 2^n*A006013(n). (End)
Showing 1-10 of 10 results.