A367389
Expansion of g.f. A(x) = B(x^2)/(1 - 2*x*B(x^2)) where B(x) = 1 + 2*x*B(x)^3 is the g.f. of A153231.
Original entry on oeis.org
1, 2, 6, 16, 52, 152, 512, 1568, 5392, 16992, 59232, 190336, 669952, 2183680, 7742464, 25512448, 90974464, 302368256, 1083175424, 3625435136, 13036688384, 43889186816, 158323564544, 535639556096, 1937483350016, 6582584115200, 23865932414976, 81381420826624, 295661476642816
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 16*x^3 + 52*x^4 + 152*x^5 + 512*x^6 + 1568*x^7 + 5392*x^8 + 16992*x^9 + 59232*x^10 + ...
where
1/A(x) = 1 - 2*x - 2*x^2 - 8*x^4 - 56*x^6 - 480*x^8 - 4576*x^10 - 46592*x^12 - ... - 2^n*binomial(3*n-1,n)/(3*n-1) * x^(2*n) - ...
-
CoefficientList[1/(-2*x + x/InverseSeries[Series[x - 2*x^3, {x, 0, 30}], x]), x] (* Vaclav Kotesovec, Dec 24 2023 *)
-
{a(n) = my(A = 1/(-2*x + x/serreverse(x - 2*x^3 + O(x^(n+2))))); polcoeff(A,n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A;
A[#A] = polcoeff( (1 + (m+1)*x*Ser(A))^m / Ser(A)^m , m-1)/m - (m-1)^(m-2) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A349253
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - 2 * x * A(x)^2)).
Original entry on oeis.org
1, 3, 19, 169, 1753, 19795, 236035, 2923857, 37256881, 485202307, 6429346899, 86405569657, 1174917167881, 16134949855251, 223460304878467, 3117521211476641, 43771643214792033, 618045740600046211, 8770377489446217235, 125013010654218317385, 1789104455068153153849
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = 1/((1 - x) (1 - 2 x A[x]^2)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = 1 + 2 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 20}]
Table[Sum[Binomial[n + k, n - k] 2^k Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 20}]
a[n_] := HypergeometricPFQ[{1/3,2/3,-n,n + 1}, {1/2,1,3/2}, -(3/2)^3];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Nov 12 2021 *)
A228484
a(n) = 2^n*(3*n)!/(n!*(2*n)!).
Original entry on oeis.org
1, 6, 60, 672, 7920, 96096, 1188096, 14883840, 188280576, 2399654400, 30766095360, 396363202560, 5126871859200, 66538909237248, 866061993246720, 11300615801536512, 147773778404769792, 1936073567335219200, 25408660721789829120, 333963051307735449600
Offset: 0
-
[2^n*Factorial(3*n)/(Factorial(n)*Factorial(2*n)): n in [0..20]]; // Vincenzo Librandi, Aug 24 2013
-
a := n -> 2^n*binomial(3*n, n): seq(a(n), n=0..16);
-
Table[2^n (3 n)!/(n! (2 n)!), {n, 0, 20}] (* Vincenzo Librandi, Aug 24 2013 *)
-
a(n) = 2^n*binomial(3*n, 2*n); \\ Michel Marcus, Mar 06 2022
A349255
G.f. A(x) satisfies A(x) = 1 / ((1 + x) * (1 - 2 * x * A(x)^2)).
Original entry on oeis.org
1, 1, 7, 47, 369, 3113, 27631, 254239, 2403361, 23201393, 227771831, 2266983119, 22822484497, 231994748633, 2377894546783, 24548520253247, 255026759000897, 2664111200687969, 27967731861910759, 294900120348032623, 3121862973452544433, 33167268461833410569
Offset: 0
-
nmax = 21; A[] = 0; Do[A[x] = 1/((1 + x) (1 - 2 x A[x]^2)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = (-1)^n + 2 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 21}]
Table[Sum[(-1)^(n - k) Binomial[n + k, n - k] 2^k Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 21}]
a[n_] := (-1)^n*HypergeometricPFQ[{1/3, 2/3, -n, n + 1}, {1/2, 1, 3/2}, (3/2)^3]; Table[a[n], {n, 0, 21}] (* Peter Luschny, Nov 12 2021 *)
A364167
Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^3 * (1 + A(x)^3).
Original entry on oeis.org
1, 2, 18, 234, 3570, 59586, 1053570, 19392490, 367677090, 7131417282, 140834140722, 2822214963882, 57243994984722, 1172991472484610, 24245748916730658, 504935751379031082, 10584721220759172162, 223163804001804187266, 4729176407109705542994, 100676187744957784842090
Offset: 0
-
a:= n-> sum(binomial(n, k)*binomial(3*n+3*k+1, n)/(3*n+3*k+1), k=0..n):
seq(a(n), n=0..49); # Christian N. Hofmann, Jul 14 2023
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n+3*k+1, n)/(3*n+3*k+1));
A217364
a(n) = 2^n*binomial(5*n, n)/(4*n+1).
Original entry on oeis.org
1, 2, 20, 280, 4560, 80960, 1520064, 29680640, 596593920, 12262581760, 256556410880, 5445566730240, 116974976102400, 2538140268625920, 55548588652625920, 1224777962595287040, 27180522769369333760, 606648758810237337600
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..724 (terms n=1..76 from Robert Israel)
- D. Birmajer, J. B. Gil, J. D. Gil and M. D. Weiner, Schröder Coloring and Applications, arXiv:1908.08103 [math.CO], 2019.
- R. J. Mathar, Series Expansion of Generalized Fresnel Integrals, arXiv:1211.3963 [math.CA], 2012.
-
[2^n*Binomial(5*n, n)/(4*n+1): n in [0..25]]; // Michael D. Weiner, Aug 21 2019
-
A217364 := j -> pochhammer(1/5, j)*pochhammer(2/5, j)*pochhammer(3/5, j)*pochhammer(4/5, j)*6250^j/(4*j+1)!:
seq(A217364(n),n=0..100); # Robert Israel, May 19 2014
-
Table[CoefficientList[InverseSeries[Series[x-2*x^5,{x,0,100}],x],x][[4*n-2]],{n,1,20}] (* Vaclav Kotesovec,Aug 20 2013 *)
Table[2^n Binomial[5 n, n] / (4 n + 1), {n, 0, 20}] (* Michael D. Weiner, Aug 21 2019 *)
-
for(n=0,20, print1(round(if(n==0, 1, 5*2^n*gamma(5*n)/(gamma(n)*gamma(4*n+2)))), ", ")) \\ G. C. Greubel, Apr 01 2017
-
{my(x='x+O('x^133), v=Vec(serreverse(x - 2*x^5))); vector(#v\4, n, v[4*n-3] ) } \\ Joerg Arndt, Apr 02 2017
-
A217364 = lambda n: 5*2^n*gamma(5*n)/(gamma(n)*gamma(4*n+2)) if n > 0 else 1
[A217364(n) for n in (0..18)] # Peter Luschny, May 19 2014
A348912
G.f. A(x) satisfies A(x) = (1 + 2 * x * A(x)^3) / (1 - x).
Original entry on oeis.org
1, 3, 21, 201, 2217, 26535, 335001, 4391553, 59203137, 815580507, 11430639165, 162470033625, 2336381642649, 33930648153615, 496935405133617, 7331179445170689, 108846406625097729, 1625145134034548019, 24385673680861258533, 367546405595389076649, 5561980053932228243529
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = (1 + 2 x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + 2 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 20}]
-
a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(n+2*k+1, n)/(n+2*k+1)); \\ Seiichi Manyama, Jul 24 2023
A217360
a(n) = 2^n*binomial(4*n, n)/(3*n+1).
Original entry on oeis.org
1, 2, 16, 176, 2240, 31008, 453376, 6888960, 107707392, 1721477120, 28000141312, 461964898304, 7712495058944, 130050777006080, 2211737871974400, 37892693797109760, 653389823437701120, 11330548232319664128, 197475886172892823552
Offset: 0
A217363
Series reversion of x - 3*x^3.
Original entry on oeis.org
1, 3, 27, 324, 4455, 66339, 1041012, 16953624, 283848543, 4855304025, 84482290035, 1490628232080, 26607713942628, 479621100042756, 8718235759397880, 159628084420459248, 2941328850997439439, 54501093415540789605, 1014898739548854163185
Offset: 1
-
f:= k -> (3*k-3)!*3^(k-1)/(k-1)!/(2*k-1)!:
map(f, [$1..30]); # Robert Israel, May 07 2017
-
CoefficientList[Series[2/3 Sqrt[z] Sin[ArcSin[(9 Sqrt[z])/2]/3], {z, 0, 20}], z](* Benedict W. J. Irwin, Jul 12 2016 *)
A369510
Expansion of (1/x) * Series_Reversion( x * ((1-x)^2-x^2)^2 ).
Original entry on oeis.org
1, 4, 28, 240, 2288, 23296, 248064, 2728704, 30764800, 353633280, 4128783360, 48827351040, 583674642432, 7041154416640, 85610725769216, 1048040981594112, 12907157115568128, 159802897621319680, 1987875305403187200, 24833149969036738560, 311409431144819589120
Offset: 0
- Bruce E. Sagan, Proper partitions of a polygon and k-Catalan numbers, Ars Combinatoria, 88 (2008), 109-124.
Cf.
A153231 (colorful triangulations with an even number of points).
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^2-x^2)^2)/x)
-
a(n) = sum(k=0, n\2, binomial(2*n+k+1, k)*binomial(5*n+3, n-2*k))/(n+1);
Showing 1-10 of 10 results.
Comments