cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A378780 a(n) = n * 2^n * binomial(3*n, n).

Original entry on oeis.org

0, 6, 120, 2016, 31680, 480480, 7128576, 104186880, 1506244608, 21596889600, 307660953600, 4359995228160, 61522462310400, 865005820084224, 12124867905454080, 169509237023047680, 2364380454476316672, 32913250644698726400, 457355892992216924160, 6345297974846973542400
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

References

  • Jonathan Borwein, David Bailey, and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Natick, MA, 2004. See p. 26.

Crossrefs

Programs

  • Mathematica
    a[n_] := n * 2^n * Binomial[3*n, n]; Array[a, 25, 0]
  • PARI
    a(n) = n * 2^n * binomial(3*n, n);

Formula

a(n) = A036289(n) * A005809(n).
a(n) = n * A228484(n).
a(n) == 0 (mod 6).
Sum_{n>=1} 1/a(n) = Pi/10 - log(2)/5 (Borwein et al., 2004; Borwein and Girgensohn, 2005; Batir, 2005).

A386918 a(n) = 2^n * binomial(4*n,n).

Original entry on oeis.org

1, 8, 112, 1760, 29120, 496128, 8614144, 151557120, 2692684800, 48201359360, 868004380672, 15706806542336, 285362317180928, 5202031080243200, 95104728494899200, 1743063914667048960, 32016101348447354880, 589188508080622534656, 10861173739509105295360
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [2^n * Binomial(4*n,n): n in [0..26]]; // Vincenzo Librandi, Aug 11 2025
  • Mathematica
    Table[2^n*Binomial[4*n,n],{n,0,30}] (* Vincenzo Librandi, Aug 11 2025 *)
  • PARI
    a(n) = 2^n*binomial(4*n, n);
    

Formula

a(n) = Sum_{k=0..n} binomial(4*n,k) * binomial(4*n-k,n-k).
a(n) = [x^n] (1+x)^(4*n)/(1-x)^(3*n+1).
a(n) = [x^n] 1/(1-2*x)^(3*n+1).
a(n) = [x^n] (1+2*x)^(4*n).

A378778 a(n) = n^2 * 2^n * binomial(3*n, n).

Original entry on oeis.org

0, 6, 240, 6048, 126720, 2402400, 42771456, 729308160, 12049956864, 194372006400, 3076609536000, 47959947509760, 738269547724800, 11245075661094912, 169748150676357120, 2542638555345715200, 37830087271621066752, 559525260959878348800, 8232406073859904634880, 120560661522092497305600
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

References

  • Jonathan Borwein, David Bailey, and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Natick, MA, 2004. See p. 26.

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2 * 2^n * Binomial[3*n, n]; Array[a, 25, 0]
  • PARI
    a(n) = n^2 * 2^n * binomial(3*n, n);

Formula

a(n) = A007758(n) * A005809(n).
a(n) = n^2 * A228484(n).
a(n) = n * A378780(n).
a(n) == 0 (mod 6).
Sum_{n>=1} 1/a(n) = Pi^2/24 - log(2)^2/2 (Borwein et al., 2004; Borwein and Girgensohn, 2005; Batir, 2005).

A137209 Decimal expansion of (1/2)*sqrt(3/Pi).

Original entry on oeis.org

4, 8, 8, 6, 0, 2, 5, 1, 1, 9, 0, 2, 9, 1, 9, 9, 2, 1, 5, 8, 6, 3, 8, 4, 6, 2, 2, 8, 3, 8, 3, 4, 7, 0, 0, 4, 5, 7, 5, 8, 8, 5, 6, 0, 8, 1, 9, 4, 2, 2, 7, 7, 0, 2, 1, 3, 8, 2, 4, 3, 1, 5, 7, 4, 4, 5, 8, 4, 1, 0, 0, 0, 3, 6, 1, 6, 3, 6, 5, 3, 0, 4, 0, 5, 6, 1, 4, 8, 1, 8, 7, 0, 3, 9, 7, 0, 0, 4, 2, 4, 1, 5, 7, 6, 4
Offset: 0

Views

Author

Zak Seidov, Mar 05 2008

Keywords

Comments

Decimal expansion of the radius x (in units of cube edge length) of sphere with volume x (in units of cube volume).
Appears in the asymptotic expansions of A228484 and A006588. - Johannes W. Meijer, Aug 22 2013

Examples

			0.488602511902919921586384622
		

Crossrefs

Cf. A135691.

Programs

  • Mathematica
    RealDigits[1/2 Sqrt[3/Pi],10,120][[1]] (* Harvey P. Dale, Jul 11 2017 *)
  • PARI
    sqrt(3)/(2*sqrt(Pi)) \\ Michel Marcus, Jun 05 2020
Showing 1-4 of 4 results.