A153357 Numbers n such that the harmonic number numerator A001008(n) is a semiprime.
4, 6, 11, 14, 15, 17, 19, 20, 23, 25, 31, 33, 34, 35, 37, 39, 49, 53, 55, 59, 61, 68, 90, 93, 94, 101, 116, 117, 121, 124, 145, 155, 158, 163, 169, 170, 186, 193, 194, 199, 205, 211, 214, 245, 258, 259, 264, 267, 283, 311, 315, 328, 340, 347, 359, 365, 371, 385
Offset: 1
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 259.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 347.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 615
Links
- Tyler Busby, Table of n, a(n) for n = 1..65
- FactorDB, Status of Numerator(H_476) in factordb.com
- Hisanori Mishima, Wolstenholme number (n = 1 to 100, n = 101 to 200, n = 201 to 300, n = 301 to 400, n = 401 to 500, n = 501 to 600).
- Eric Weisstein's World of Mathematics, Wolstenholme's Theorem, Harmonic Number.
Crossrefs
Extensions
More terms from Sean A. Irvine, Aug 22 2011
Two missing terms added by D. S. McNeil, Aug 23 2011
More terms from Sean A. Irvine, Apr 01 2013
Two more terms from Daniel M. Jensen, Jun 26 2020
Comments