A153437 Erroneous version of A153436.
2, 2, 2, 2, 4, 2, 99, 120, 3, 2, 6, 3, 4, 21, 12, 2, 30, 3, 5, 47, 31, 34, 27, 2, 31, 2, 50, 5, 20, 23, 89, 29, 179, 11, 2, 16, 41, 96, 75, 22, 55, 10, 209, 46, 38, 17, 34, 7, 61, 121
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Table[i = 1; m = 3^u; While[i++; cp = 1 + i^m + i^(2*m); ! PrimeQ[cp]]; i, {u, 1, 7}] (* Lei Zhou, Feb 01 2012 *)
a(n) = my(k=2); while (!isprime(k^(3^n)*(k^(3^n)+1) + 1), k++); k; \\ Michel Marcus, Jan 01 2023
Table[SelectFirst[Range@ 200, PrimeQ[#^(2^n) (#^(2^n) - 1) + 1] &], {n, 0, 9}] (* Michael De Vlieger, Jan 15 2018 *)
a(n)=k=1;while(!ispseudoprime(k^(2^n)*(k^(2^n)-1)+1),k++);k n=0;while(n<100,print1(a(n),", ");n++) \\ Derek Orr, Aug 14 2014
When k = 7, k^18 - k^9 + 1 is prime. Since this isn't prime for k < 7, a(2) = 7.
a246120[n_Integer] := Module[{k = 1}, While[! PrimeQ[k^(3^n)*(k^(3^n) - 1) + 1], k++]; k]; a246120 /@ Range[0, 9] (* Michael De Vlieger, Aug 15 2014 *)
a(n)=k=1;while(!ispseudoprime(k^(3^n)*(k^(3^n)-1)+1),k++);k n=0;while(n<100,print1(a(n),", ");n++) \\ Derek Orr, Aug 14 2014
When k = 88, k^72 - k^36 + 1 is prime. Since this isn't prime for k < 88, a(2) = 88.
a(n)=k=1; while(!ispseudoprime(k^(6^n)*(k^(6^n)-1)+1), k++); k n=0; while(n<100, print1(a(n), ", "); n++)
Comments