A153448 3 times 12-gonal (or dodecagonal) numbers: a(n) = 3*n*(5*n-4).
0, 3, 36, 99, 192, 315, 468, 651, 864, 1107, 1380, 1683, 2016, 2379, 2772, 3195, 3648, 4131, 4644, 5187, 5760, 6363, 6996, 7659, 8352, 9075, 9828, 10611, 11424, 12267, 13140, 14043, 14976, 15939, 16932, 17955, 19008, 20091, 21204
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
Table[3n(5n-4),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,3,36},40] (* Harvey P. Dale, Jun 18 2014 *) 3*PolygonalNumber[12,Range[0,60]] (* Harvey P. Dale, May 13 2022 *)
-
PARI
a(n)=3*n*(5*n-4) \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 15*n^2 - 12*n = A051624(n)*3.
a(n) = 30*n + a(n-1) - 27 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(1 + 9*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=3, a(2)=36. - Harvey P. Dale, Jun 18 2014
E.g.f.: 3*x*(1 + 5*x)*exp(x). - G. C. Greubel, Aug 21 2016
a(n) = (4*n-2)^2 - (n-2)^2. In general, if P(k,n) is the k-th n-gonal number, then (2*k+1)*P(8*k+4,n) = ((3*k+1)*n-2*k)^2 - (k*n-2*k)^2. - Charlie Marion, Jul 29 2021
Comments