A153643 Jacobsthal numbers A001045 incremented by 2.
2, 3, 3, 5, 7, 13, 23, 45, 87, 173, 343, 685, 1367, 2733, 5463, 10925, 21847, 43693, 87383, 174765, 349527, 699053, 1398103, 2796205, 5592407, 11184813, 22369623, 44739245, 89478487, 178956973, 357913943, 715827885, 1431655767, 2863311533, 5726623063
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
Programs
-
GAP
a:=[2,3,3];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Apr 02 2019
-
Magma
I:=[2,3,3]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) -2*Self(n-3): n in [1..40]]; // G. C. Greubel, Apr 02 2019
-
Mathematica
LinearRecurrence[{1,2},{0,1}, 40] + 2 (* Harvey P. Dale, May 26 2014 *) LinearRecurrence[{2,1,-2},{2,3,3}, 40] (* Georg Fischer, Apr 02 2019 *)
-
PARI
my(x='x+O('x^40)); Vec( (2-x-5*x^2)/((1-x^2)*(1-2*x)) ) \\ G. C. Greubel, Apr 02 2019
-
Python
def A153643(n): return ((1<
Chai Wah Wu, Apr 18 2025 -
Sage
((2-x-5*x^2)/((1-x^2)*(1-2*x))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 02 2019
Formula
G.f.: (2 - x - 5*x^2)/((1+x)*(1-x)*(1-2*x)). - R. J. Mathar, Jan 23 2009
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n >= 3. - Andrew Howroyd, Feb 26 2018
Extensions
Edited and extended by R. J. Mathar, Jan 23 2009