cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A153643 Jacobsthal numbers A001045 incremented by 2.

Original entry on oeis.org

2, 3, 3, 5, 7, 13, 23, 45, 87, 173, 343, 685, 1367, 2733, 5463, 10925, 21847, 43693, 87383, 174765, 349527, 699053, 1398103, 2796205, 5592407, 11184813, 22369623, 44739245, 89478487, 178956973, 357913943, 715827885, 1431655767, 2863311533, 5726623063
Offset: 0

Views

Author

Paul Curtz, Dec 30 2008

Keywords

Crossrefs

Programs

  • GAP
    a:=[2,3,3];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Apr 02 2019
    
  • Magma
    I:=[2,3,3]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) -2*Self(n-3): n in [1..40]]; // G. C. Greubel, Apr 02 2019
    
  • Mathematica
    LinearRecurrence[{1,2},{0,1}, 40] + 2 (* Harvey P. Dale, May 26 2014 *)
    LinearRecurrence[{2,1,-2},{2,3,3}, 40] (* Georg Fischer, Apr 02 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec( (2-x-5*x^2)/((1-x^2)*(1-2*x)) ) \\ G. C. Greubel, Apr 02 2019
    
  • Python
    def A153643(n): return ((1<Chai Wah Wu, Apr 18 2025
  • Sage
    ((2-x-5*x^2)/((1-x^2)*(1-2*x))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 02 2019
    

Formula

a(n) = 2 + A001045(n) = A001045(n) + A007395(n) = 1 + A128209(n).
a(n) - A010684(n) = A078008(n), first differences of A001045. - Paul Curtz, Jan 17 2009
G.f.: (2 - x - 5*x^2)/((1+x)*(1-x)*(1-2*x)). - R. J. Mathar, Jan 23 2009
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n >= 3. - Andrew Howroyd, Feb 26 2018

Extensions

Edited and extended by R. J. Mathar, Jan 23 2009