A153668
Greatest number m such that the fractional part of (3/2)^A153664(n) >= 1-(1/m).
Original entry on oeis.org
2, 14, 222, 1772, 2747, 12347, 135794, 90529, 222246, 570361, 2134829, 6901329, 4600886, 3067257, 5380892, 75503109, 814558605, 543039070, 362026046, 241350697, 160900465, 107266976, 101721580, 190708740, 127139160
Offset: 1
a(2)=14, since 1-(1/15)=0.933...>fract((3/2)^A153664(2))=fract((3/2)^14)=0.929...>=1-(1/14).
-
A153664 = {1, 14, 163, 1256, 2677, 8093, 49304, 49305, 158643, 164000, 835999, 2242294, 2242295, 2242296, 3965133, 25380333, 92600006, 92600007, 92600008, 92600009, 92600010, 92600011, 9267816, 125040717, 125040718};
Table[fp = FractionalPart[(3/2)^A153664[[n]]]; m = Floor[1/(1 - fp)];
While[fp >= 1 - (1/m), m++]; m - 1, {n, 1, Length[A153664]}] (* Robert Price, Mar 26 2019 *)
A153662
Numbers k such that the fractional part of (3/2)^k is less than 1/k.
Original entry on oeis.org
1, 2, 4, 7, 3328, 3329, 4097, 12429, 12430, 12431, 18587, 44257, 112896, 129638, 4264691, 144941960, 144941961, 144941962
Offset: 1
a(4) = 7 since fract((3/2)^7) = 0.0859375 < 1/7, but fract((3/2)^5) = 0.59375 >= 1/5 and fract((3/2)^6) = 0.390625 >= 1/6.
A153663
Minimal exponents m such that the fractional part of (3/2)^m reaches a maximum (when starting with m=1).
Original entry on oeis.org
1, 5, 8, 10, 12, 14, 46, 58, 105, 157, 163, 455, 1060, 1256, 2677, 8093, 28277, 33327, 49304, 158643, 164000, 835999, 2242294, 25380333, 92600006
Offset: 1
A153672
Numbers k such that the fractional part of (101/100)^k is greater than 1-(1/k).
Original entry on oeis.org
1, 69, 180, 783, 859, 1803, 10763, 19105, 39568, 50172, 132572, 355146, 1452050, 2245950, 3047334, 3933030, 4165171, 98544173
Offset: 1
a(2) = 69, since fract((101/100)^69) = 0.9868... > 0.9855... = 1 - (1/69), but fract((101/100)^k) <= 1 - (1/k) for 1 < k < 69.
A153680
Numbers k such that the fractional part of (1024/1000)^k is greater than 1-(1/k).
Original entry on oeis.org
1, 29, 82, 134, 277, 1306, 2036, 2349, 6393, 9389, 9816, 21689, 34477, 145984, 171954, 956357, 2746739
Offset: 1
a(2) = 29, since fract((1024/1000)^29) = 0.98929... > 0.9655... = 1 - (1/29), but fract((1024/1000)^k) <= 1 - (1/k) for 1 < k < 29.
A153688
Numbers k such that the fractional part of (11/10)^k is greater than 1-(1/k).
Original entry on oeis.org
1, 7, 77, 103, 320, 1821, 2992, 15290, 88651, 88652, 180168, 410498, 548816, 672732
Offset: 1
a(2) = 7, since fract((11/10)^7) = 0.9487... > 0.8571... = 1 - (1/7), but fract((11/10)^k) <= 1 - (1/k) for 1 < k < 7.
A153696
Numbers k such that the fractional part of (10/9)^k is greater than 1-(1/k).
Original entry on oeis.org
1, 6, 13, 17, 5513, 12746, 126237, 430116, 477190, 1295623, 1319307, 3596185, 6109350
Offset: 1
a(3) = 13, since fract((10/9)^13) = 0.9341... > 0.923... = 1 - (1/13), but fract((10/9)^k) <= 1 - (1/k) for 1 < k < 13.
A153704
Numbers k such that the fractional part of e^k is greater than 1-(1/k).
Original entry on oeis.org
1, 8, 19, 178, 209, 1907, 32653, 119136, 220010
Offset: 1
a(2)=8, since fract(e^8) = 0.957987... >0.875 = 1-(1/8), but fract(e^k) = 0.389..., 0.085..., 0.598..., 0.413..., 0.428..., 0.633... for 2<=k<=7 which all are less than 1-(1/k).
A153665
Greatest number m such that the fractional part of (3/2)^A081464(n) <= 1/m.
Original entry on oeis.org
2, 4, 16, 25, 89, 91, 105, 127, 290, 668, 869, 16799, 92694, 137921, 257825, 350408, 419427, 723749, 5271294, 14223700, 18090494, 88123482, 706641581
Offset: 1
a(4)=25 since 1/26<fract((3/2)^A081464(4))=fract((3/2)^29)=0.039...<=1/25.
-
A081464 = {1, 2, 4, 29, 95, 153, 532, 613, 840, 2033, 2071, 3328, 12429, 112896, 129638, 371162, 1095666, 3890691, 4264691, 31685458, 61365215, 92432200, 144941960};
Table[fp = FractionalPart[(3/2)^A081464[[n]]]; m = Floor[1/fp];
While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A081464]}] (* Robert Price, Mar 26 2019 *)
A153666
Greatest number m such that the fractional part of (3/2)^A153662(n) <= 1/m.
Original entry on oeis.org
2, 4, 16, 11, 16799, 11199, 5536, 92694, 61796, 41197, 23242, 55710, 137921, 257825, 5271294, 706641581, 471094387, 314062925
Offset: 1
a(3)=16 since 1/17<fract((3/2)^A153662(3))=fract((3/2)^4)=0.0625=1/16.
-
A153662 = {1, 2, 4, 7, 3328, 3329, 4097, 12429, 12430, 12431, 18587, 44257, 112896, 129638, 4264691, 144941960, 144941961, 144941962};
Table[fp = FractionalPart[(3/2)^A153662[[n]]]; m = Floor[1/fp];
While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153662]}] (* Robert Price, Mar 26 2019 *)
Showing 1-10 of 21 results.
Next
Comments