cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A153666 Greatest number m such that the fractional part of (3/2)^A153662(n) <= 1/m.

Original entry on oeis.org

2, 4, 16, 11, 16799, 11199, 5536, 92694, 61796, 41197, 23242, 55710, 137921, 257825, 5271294, 706641581, 471094387, 314062925
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2008

Keywords

Examples

			a(3)=16 since 1/17<fract((3/2)^A153662(3))=fract((3/2)^4)=0.0625=1/16.
		

Crossrefs

Programs

  • Mathematica
    A153662 = {1, 2, 4, 7, 3328, 3329, 4097, 12429, 12430, 12431, 18587, 44257, 112896, 129638, 4264691, 144941960, 144941961, 144941962};
    Table[fp = FractionalPart[(3/2)^A153662[[n]]]; m = Floor[1/fp];
    While[fp <= 1/m, m++];  m - 1, {n, 1, Length[A153662]}] (* Robert Price, Mar 26 2019 *)

Formula

a(n):=floor(1/fract((3/2)^A153662(n))), where fract(x) = x-floor(x).

Extensions

a(15)-a(18) from Robert Price, May 09 2012

A002379 a(n) = floor(3^n / 2^n).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 17, 25, 38, 57, 86, 129, 194, 291, 437, 656, 985, 1477, 2216, 3325, 4987, 7481, 11222, 16834, 25251, 37876, 56815, 85222, 127834, 191751, 287626, 431439, 647159, 970739, 1456109, 2184164, 3276246, 4914369, 7371554, 11057332
Offset: 0

Views

Author

Keywords

Comments

It is an important unsolved problem related to Waring's problem to show that a(n) = floor((3^n-1)/(2^n-1)) holds for all n > 1. This has been checked for 10000 terms and is true for all sufficiently large n, by a theorem of Mahler. [Lichiardopol]
a(n) = floor((3^n-1)/(2^n-1)) holds true at least for 2 <= n <= 305000. - Hieronymus Fischer, Dec 31 2008
a(n) is also the curve length (rounded down) of the Sierpiński arrowhead curve after n iterations, let a(0) = 1. - Kival Ngaokrajang, May 21 2014
a(n) is composite infinitely often (Forman and Shapiro). More exactly, a(n) is divisible by at least one of 2, 5, 7 or 11 infinitely often (Dubickas and Novikas). - Tomohiro Yamada, Apr 15 2017

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
  • S. S. Pillai, On Waring's problem, J. Indian Math. Soc., 2 (1936), 16-44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046037, A070758, A070759, A067904 (Composites and Primes).
Cf. A064628 (an analog for 4/3).

Programs

Formula

a(n) = b(n) - (-2/3)^n where b(n) is defined by the recursion b(0):=2, b(1):=5/6, b(n+1):=(5/6)*b(n) + b(n-1). - Hieronymus Fischer, Dec 31 2008
a(n) = (1/2)*(b(n) + sqrt(b(n)^2 - (-4)^n)) (with b(n) as defined above). - Hieronymus Fischer, Dec 31 2008
3^n = a(n)*2^n + A002380(n). - R. J. Mathar, Oct 26 2012
a(n) = -(1/2) + (3/2)^n + arctan(cot((3/2)^n Pi)) / Pi. - Fred Daniel Kline, Apr 14 2018
a(n+1) = round( -(1/2) + (3^n-1)/(2^n-1) ). - Fred Daniel Kline, Apr 14 2018

Extensions

More terms from Robert G. Wilson v, May 11 2004

A153663 Minimal exponents m such that the fractional part of (3/2)^m reaches a maximum (when starting with m=1).

Original entry on oeis.org

1, 5, 8, 10, 12, 14, 46, 58, 105, 157, 163, 455, 1060, 1256, 2677, 8093, 28277, 33327, 49304, 158643, 164000, 835999, 2242294, 25380333, 92600006
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2008

Keywords

Comments

Recursive definition: a(1)=1, a(n) = least number m such that the fractional part of (3/2)^m is greater than the
fractional part of (3/2)^k for all k, 1<=k
The fractional part of k=835999 is .999999 5 which is greater than (k-1)/k. The fractional part of k=2242294 is .999999 8 which is greater than (k-1)/k. The fractional part of k=25380333 is .999999 98 which is greater than (k-1)/k. The fractional part of k=92600006 is .999999 998 which is greater than (k-1)/k. So, all additional numbers in this sequence must be in A153664 and >3*10^8. - Robert Price, May 09 2012

Examples

			a(2)=5, since fract((3/2)^5)=0.59375, but fract((3/2)^k)=0.5, 0.25, 0.375, 0.0625 for 1<=k<=4; thus
fract((3/2)^5)>fract((3/2)^k) for 1<=k<5.
		

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = For[m = a[n-1]+1, True, m++, f = FractionalPart[(3/2)^m]; If[AllTrue[Range[m-1], f > FractionalPart[(3/2)^#]&], Print[n, " ", m]; Return[m]]];
    Array[a, 21] (* Jean-François Alcover, Feb 25 2019 *)

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract((3/2)^m) > fract((3/2)^a(k-1))}, where fract(x) = x-floor(x).

Extensions

a(22)-a(25) from Robert Price, May 09 2012

A153664 Numbers k such that the fractional part of (3/2)^k is greater than 1-(1/k).

Original entry on oeis.org

1, 14, 163, 1256, 2677, 8093, 49304, 49305, 158643, 164000, 835999, 2242294, 2242295, 2242296, 3965133, 25380333, 92600006, 92600007, 92600008, 92600009, 92600010, 92600011, 99267816, 125040717, 125040718
Offset: 1

Author

Hieronymus Fischer, Dec 31 2008

Keywords

Comments

Numbers k such that fract((3/2)^k) > 1-(1/k), where fract(x) = x-floor(x).
The next term is greater than 3*10^8.

Examples

			a(2) = 14 since fract((3/2)^14) = 0.92926... > 0.92857... = 1 - (1/14), but fract((3/2)^k) <= 1 - (1/k) for 1<k<14.
		

Programs

  • Mathematica
    Select[Range[1000], FractionalPart[(3/2)^#] >= 1 - (1/#) &] (* G. C. Greubel, Aug 24 2016 *)

Extensions

a(11)-a(25) from Robert Gerbicz, Nov 21 2010

A153670 Numbers k such that the fractional part of (101/100)^k is less than 1/k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 70, 209, 241, 378, 2697, 4806, 173389, 529938, 1334508, 1572706, 7840546, 15896994, 20204295, 71074288, 119325567
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Numbers k such that fract((101/100)^k) < 1/k, where fract(x) = x-floor(x).
The next term is greater than 2*10^8.

Examples

			a(10) = 70 since fract((101/100)^70) = 0.006... < 1/10, but fract((101/100)^k) > 0.1 >= 1/k for 10 <= k <= 69.
		

Programs

  • Mathematica
    Select[Range[1000], FractionalPart[(101/100)^#] < (1/#) &] (* G. C. Greubel, Aug 24 2016 *)
  • Python
    from itertools import count, islice
    def A153670gen(): # generator of terms
        k10, k11 = 100, 101
        for k in count(1):
            if (k11 % k10)*k < k10:
                yield k
            k10 *= 100
            k11 *= 101
    A153670_list = list(islice(A153670gen(),16)) # Chai Wah Wu, Dec 23 2021

Extensions

a(18)-a(24) from Robert Gerbicz, Nov 29 2010

A153678 Numbers k such that the fractional part of (1024/1000)^k is less than 1/k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 585, 1164, 1707, 522271, 3675376, 3906074, 9424094
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Numbers k such that fract((1024/1000)^k) < 1/k, where fract(x) = x-floor(x).
The next such number must be greater than 5*10^5.
a(14) > 10^7. - Robert Price, Mar 16 2019

Examples

			a(7) = 585 since fract((1024/1000)^585) = 0.00139... < 1/585, but fract((1024/1000)^k) >= 1/k for 7 <= k <= 584.
		

Programs

  • Mathematica
    Select[Range[2000], FractionalPart[(1024/1000)^#] < (1/#) &] (* G. C. Greubel, Aug 24 2016; corrected by Robert Price, Mar 16 2019 *)
  • PARI
    isok(n) = frac((1024/1000)^n) < 1/n \\ Michel Marcus, Aug 06 2013

Extensions

a(10)-a(13) from Robert Price, Mar 16 2019

A153686 Numbers k such that the fractional part of (11/10)^k is less than 1/k.

Original entry on oeis.org

1, 2, 3, 17, 37, 48, 237, 420, 599, 615, 6638, 13885, 13886, 62963, 1063942, 9479731
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Numbers k such that fract((11/10)^k) < 1/k, where fract(x) = x-floor(x).
The next such number must be greater than 2*10^5.
a(17) > 10^7. - Robert Price, Mar 19 2019

Examples

			a(4) = 17 since fract((11/10)^17) = 0.05447... < 1/17, but fract((11/10)^k) >= 1/k for 4 <= k <= 16.
		

Programs

  • Mathematica
    Select[Range[1000], FractionalPart[(11/10)^#] < (1/#) &] (* G. C. Greubel, Aug 24 2016 *)
  • Python
    A153686_list, k, k10, k11 =  [], 1, 10, 11
    while k < 10**6:
        if (k11 % k10)*k < k10:
            A153686_list.append(k)
        k += 1
        k10 *= 10
        k11 *= 11 # Chai Wah Wu, Apr 01 2021

Extensions

a(15)-a(16) from Robert Price, Mar 19 2019

A153694 Numbers k such that the fractional part of (10/9)^k is less than 1/k.

Original entry on oeis.org

1, 2, 7, 62, 324, 1647, 3566, 5464, 8655, 8817, 123956, 132891, 182098, 566593, 2189647, 2189648, 3501843, 3501844
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Numbers k such that fract((10/9)^k) < 1/k, where fract(x) = x-floor(x).
The next such number must be greater than 2*10^5.
a(19) > 10^7. - Robert Price, Mar 24 2019
Given a number k that is not only a term of this sequence but also has the property that the integer part of (10/9)^k is divisible by 9, we can expect that k+1 will likely also be a term of the sequence. E.g., k = 2189647 is a term because fract((10/9)^k) = 0.000000373557... < 0.000000456694... = 1/k, and since floor((10/9)^k) is divisible by 9, the integer and fractional parts of (10/9)^(k+1) will be exactly 10/9 times the integer and fractional parts of (10/9)^k, respectively, yielding a fractional part (10/9) * 0.000000373557... = 0.000000415064... < 0.000000456694... = 1/(k+1), so k+1 = 2189648 is also a term. - Jon E. Schoenfield, Mar 24 2019

Examples

			a(3) = 7 since fract((10/9)^7) = 0.09075... < 1/7, but fract((10/9)^k) >= 1/k for 3 <= k <= 6.
		

Programs

  • Mathematica
    Select[Range[1000], FractionalPart[(10/9)^#] < (1/#) &] (* G. C. Greubel, Aug 24 2016 *)

Extensions

a(14)-a(18) from Robert Price, Mar 24 2019

A153702 Numbers k such that the fractional part of e^k is less than 1/k.

Original entry on oeis.org

1, 2, 3, 9, 732, 5469, 28414, 37373, 93638, 136986, 192897
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Numbers k such that fract(e^k) < 1/k, where fract(x) = x-floor(x).
The next such number must be greater than 100000.
a(12) > 300000. - Robert Price, Mar 23 2019

Examples

			a(4) = 9 since fract(e^9) = 0.08392... < 1/9, but fract(e^k) = 0.598..., 0.413..., 0.428..., 0.633..., 0.957... for 4 <= k <= 8, which are all greater than 1/k.
		

Programs

  • Mathematica
    Select[Range[1000], FractionalPart[E^#] < (1/#) &] (* G. C. Greubel, Aug 24 2016 *)

Extensions

a(10)-a(11) from Robert Price, Mar 23 2019

A153665 Greatest number m such that the fractional part of (3/2)^A081464(n) <= 1/m.

Original entry on oeis.org

2, 4, 16, 25, 89, 91, 105, 127, 290, 668, 869, 16799, 92694, 137921, 257825, 350408, 419427, 723749, 5271294, 14223700, 18090494, 88123482, 706641581
Offset: 1

Author

Hieronymus Fischer, Dec 31 2008

Keywords

Examples

			a(4)=25 since 1/26<fract((3/2)^A081464(4))=fract((3/2)^29)=0.039...<=1/25.
		

Programs

  • Mathematica
    A081464 = {1, 2, 4, 29, 95, 153, 532, 613, 840, 2033, 2071, 3328, 12429, 112896, 129638, 371162, 1095666, 3890691, 4264691, 31685458, 61365215, 92432200, 144941960};
    Table[fp = FractionalPart[(3/2)^A081464[[n]]]; m = Floor[1/fp];
    While[fp <= 1/m, m++];  m - 1, {n, 1, Length[A081464]}] (* Robert Price, Mar 26 2019 *)

Formula

a(n):=floor(1/fract((3/2)^A081464(n))), where fract(x) = x-floor(x).

Extensions

a(16)-a(23) from Robert Price, May 09 2012
Showing 1-10 of 22 results. Next