1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 110, 180, 783, 859, 1803, 7591, 10763, 19105, 50172, 355146, 1101696, 1452050, 3047334, 3933030
Offset: 1
A153679
Minimal exponents m such that the fractional part of (1024/1000)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 82, 134, 1306, 2036, 6393, 34477, 145984, 2746739, 2792428, 8460321
Offset: 1
A153687
Minimal exponents m such that the fractional part of (11/10)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 23, 56, 77, 103, 320, 1477, 1821, 2992, 15290, 180168, 410498, 548816, 672732, 2601223
Offset: 1
A153695
Minimal exponents m such that the fractional part of (10/9)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 13, 17, 413, 555, 2739, 3509, 3869, 5513, 12746, 31808, 76191, 126237, 430116, 477190, 1319307, 3596185
Offset: 1
a(7)=13, since fract((10/9)^13) = 0.93..., but fract((10/9)^k) < 0.89 for 1 <= k <= 12; thus fract((10/9)^13) > fract((10/9)^k) for 1 <= k < 13 and 13 is the minimal exponent > 6 with this property.
-
$MaxExtraPrecision = 100000;
p = 0; Select[Range[1, 20000],
If[FractionalPart[(10/9)^#] > p, p = FractionalPart[(10/9)^#];
True] &] (* Robert Price, Mar 24 2019 *)
-
A153695_list, m, m10, m9, q = [], 1, 10, 9, 0
while m < 10**4:
r = m10 % m9
if r > q:
q = r
A153695_list.append(m)
m += 1
m10 *= 10
m9 *= 9
q *= 9 # Chai Wah Wu, May 16 2020
A153665
Greatest number m such that the fractional part of (3/2)^A081464(n) <= 1/m.
Original entry on oeis.org
2, 4, 16, 25, 89, 91, 105, 127, 290, 668, 869, 16799, 92694, 137921, 257825, 350408, 419427, 723749, 5271294, 14223700, 18090494, 88123482, 706641581
Offset: 1
a(4)=25 since 1/26<fract((3/2)^A081464(4))=fract((3/2)^29)=0.039...<=1/25.
-
A081464 = {1, 2, 4, 29, 95, 153, 532, 613, 840, 2033, 2071, 3328, 12429, 112896, 129638, 371162, 1095666, 3890691, 4264691, 31685458, 61365215, 92432200, 144941960};
Table[fp = FractionalPart[(3/2)^A081464[[n]]]; m = Floor[1/fp];
While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A081464]}] (* Robert Price, Mar 26 2019 *)
A153666
Greatest number m such that the fractional part of (3/2)^A153662(n) <= 1/m.
Original entry on oeis.org
2, 4, 16, 11, 16799, 11199, 5536, 92694, 61796, 41197, 23242, 55710, 137921, 257825, 5271294, 706641581, 471094387, 314062925
Offset: 1
a(3)=16 since 1/17<fract((3/2)^A153662(3))=fract((3/2)^4)=0.0625=1/16.
-
A153662 = {1, 2, 4, 7, 3328, 3329, 4097, 12429, 12430, 12431, 18587, 44257, 112896, 129638, 4264691, 144941960, 144941961, 144941962};
Table[fp = FractionalPart[(3/2)^A153662[[n]]]; m = Floor[1/fp];
While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153662]}] (* Robert Price, Mar 26 2019 *)
A091560
Fractional part of e^a(n) is the largest yet.
Original entry on oeis.org
1, 8, 19, 76, 166, 178, 209, 1907, 20926, 22925, 32653, 119136
Offset: 1
Showing 1-10 of 21 results.
Next
Comments