cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000731 Expansion of Product (1 - x^k)^8 in powers of x.

Original entry on oeis.org

1, -8, 20, 0, -70, 64, 56, 0, -125, -160, 308, 0, 110, 0, -520, 0, 57, 560, 0, 0, 182, -512, -880, 0, 1190, -448, 884, 0, 0, 0, -1400, 0, -1330, 1000, 1820, 0, -646, 1280, 0, 0, -1331, -2464, 380, 0, 1120, 0, 2576, 0, 0, -880, 1748, 0, -3850, 0, -3400, 0, 2703, 4160, -2500, 0, 3458
Offset: 0

Views

Author

Keywords

Comments

Number 22 of the 74 eta-quotients listed in Table I of Martin (1996).
Denoted by g_4(q) in Cynk and Hulek in Remark 3.4 on page 12 as the unique level 9 form of weight 4.
This is a member of an infinite family of integer weight modular forms. g_1 = A033687, g_2 = A030206, g_3 = A130539, g_4 = A000731. - Michael Somos, Aug 24 2012
a(n)=0 if and only if A033687(n)=0 (see the Han-Ono paper). - Emeric Deutsch, May 16 2008
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 8*x + 20*x^2 - 70*x^3 + 64*x^4 + 56*x^5 - 125*x^6 - 160*x^7 + ...
G.f. = q - 8*q^4 + 20*q^7 - 70*q^13 + 64*q^16 + 56*q^19 - 125*q^25 - ...
		

References

  • Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A002107, A010815 - A010840.

Programs

  • Magma
    Basis( CuspForms( Gamma0(9), 4), 56) [1]; /* Michael Somos, Dec 09 2013 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^8, {x, 0, n}]; (* Michael Somos, Sep 29 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}]^8, {x, 0, n}]; (* Michael Somos, Dec 09 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^8, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, p%3==2, if( e%2, 0, (-1)^(e/2) * p^(3*e/2)), forstep( y=sqrtint(4*p\3), sqrtint(p\3), -1, if( issquare( 4*p - 3*y^2, &x), if( x%3!=2, x=-x); break)); a0=1; a1 = y = x * (x^2 - 3*p); for( i=2, e, x = y*a1 - p^3*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 23 2006 */
    
  • Sage
    CuspForms( Gamma0(9), 4, prec=56).0; # Michael Somos, May 28 2013
    

Formula

Expansion of q^(-1/3) * eta(q)^8 in powers of q.
Expansion of q^(-1/3) * b(q)^3 * c(q) / 3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Nov 08 2006
Expansion of q^(-1) * b(q) * c(q)^3 / 27 in powers of q^3 where b(), c() are cubic AGM theta functions. - Michael Somos, Nov 08 2006
Euler transform of period 1 sequence [ -8, ...].
a(n) = b(3*n + 1) where b(n) is multiplicative and b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-1)^(e/2) * p^(3*e/2) if p == 2 (mod 3), b(p^e) = b(p)*b(p^(e-1)) - b(p^(e-2))*p^3 if p == 1 (mod 3) where b(p) = (x^2 - 3*p)*x, 4*p = x^2 + 3*y^2, |x|<|y| and x == 2 (mod 3). - Michael Somos, Aug 23 2006
Given g.f. A(x), then B(x) = x * A(x^3) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 - u * w * (u + 16 * w). - Michael Somos, Feb 19 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 81 (t/i)^4 f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 29 2011
G.f.: Product_{k>0} (1 - x^k)^8.
a(2*n) = A153728(n). - Michael Somos, Sep 29 2011
a(4*n + 1) = -8 * a(n). - Michael Somos, Dec 06 2004
a(4*n + 3) = a(16*n + 13) = 0. - Michael Somos, Oct 19 2005
A092342(n) = a(n) + 81*A033690(n-1). - Michael Somos, Aug 22 2007
Sum_{n>=0} a(n) * q^(3*n + 1) = (Sum_{i,j,k in Z} (i-j) * (j-k) * (k-i) * q^((i*i + j*j + k*k) / 2)) / 2 where 0 = i+j+k, i == 1 (mod 3), j == 2 (mod 3), and k == 0 (mod 3). - Michael Somos, Sep 22 2014
a(0) = 1, a(n) = -(8/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-8*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are all congruent to 2 (mod 3). Then a( M^2*n + (M^2 - 1)/3 ) = (-1)^k*M^3*a(n). See Cooper et al., Theorem 1. - Peter Bala, Dec 01 2020
a(n) = b(3*n + 1) where b(n) is multiplicative and b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-p^3)^(e/2) if p == 2 (mod 3), b(p^e) = (((x+sqrt(-3)*y)/2)^(3*e+3) - ((x-sqrt(-3)*y)/2)^(3*e+3))/(((x+sqrt(-3)*y)/2)^3 - ((x-sqrt(-3)*y)/2)^3) if p == 1 (mod 3) where 4*p = x^2 + 3*y^2, |x|<|y| and x == 2 (mod 3). - Jianing Song, Mar 19 2022

Extensions

Corrected by Charles R Greathouse IV, Sep 02 2009

A153729 Expansion of q^(-1/3) * (eta(q)^8 + 32 * eta(q^4)^8) in powers of q.

Original entry on oeis.org

1, 24, 20, 0, -70, -192, 56, 0, -125, 480, 308, 0, 110, 0, -520, 0, 57, -1680, 0, 0, 182, 1536, -880, 0, 1190, 1344, 884, 0, 0, 0, -1400, 0, -1330, -3000, 1820, 0, -646, -3840, 0, 0, -1331, 7392, 380, 0, 1120, 0, 2576, 0, 0, 2640, 1748, 0, -3850, 0, -3400, 0, 2703, -12480, -2500, 0
Offset: 0

Views

Author

Michael Somos, Dec 31 2008

Keywords

Examples

			q + 24*q^4 + 20*q^7 - 70*q^13 - 192*q^16 + 56*q^19 - 125*q^25 + ...
		

Crossrefs

A000731(2*n) = A153728(n) = a(2*n). 24 * A000731(n) = a(4*n + 1).

Programs

  • Mathematica
    QP = QPochhammer; s=QP[q]^8+32*q*QP[q^4]^8 + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^8 + 32 * x * eta(x^4 + A)^8, n))}
    
  • PARI
    {a(n) = local(A, p, e, x, y, a0, a1); if( n<0, 0, n = 3*n + 1; A = factor( n); prod( k=1, matsize(A)[1], if( p = A[k, 1], e = A[k, 2]; if( p==3, 0, if( p==2, -3 * ((e+1)%2) * (-8)^(e\2), if( p%3==2, if(e%2, 0, (-p^3) ^ (e/2)), forstep( y = sqrtint(4*p\3), sqrtint(p\3), -1, if( issquare( 4*p - 3*y^2, &x), if( x%3!=2, x = -x); break)); a0 = 1; a1 = y = x * (x^2 - 3*p); for( i=2, e, x = y*a1 - p^3*a0; a0 = a1; a1 = x); a1))))))} /* Michael Somos, Mar 01 2011 */

Formula

G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 2592 (t / i)^4 g(t) where q = exp(2 Pi i t) and g() is g.f. for A153728.
a(4*n + 3) = 0.
a(n) = b(3*n + 1) where b(n) is multiplicative and b(3^e) = 0^e, b(2^e) = (-3/2) * (1+(-1)^e) * (-8)^(e/2), b(p^e) = (1/2) * (1+(-1)^e) * (-p^3) ^ (e/2) if p == 2 (mod 3), b(p^e) = b(p) * b(p^(e-1)) - p^3 * b(p^(e-2)) if p == 1 (mod 3) where b(p) = x * (x^2 -3*p), 4*p = x^2 + 3*y^2, |x|<|y| and x == 2 (mod 3). - Michael Somos, Mar 01 2011

A261278 Expansion of eta(q^3)^8 + 4 * eta(q^6)^8 in powers of q.

Original entry on oeis.org

1, 4, 0, -8, 0, 0, 20, -32, 0, 0, 0, 0, -70, 80, 0, 64, 0, 0, 56, 0, 0, 0, 0, 0, -125, -280, 0, -160, 0, 0, 308, 256, 0, 0, 0, 0, 110, 224, 0, 0, 0, 0, -520, 0, 0, 0, 0, 0, 57, -500, 0, 560, 0, 0, 0, -640, 0, 0, 0, 0, 182, 1232, 0, -512, 0, 0, -880, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Aug 14 2015

Keywords

Examples

			G.f. = x + 4*x^2 - 8*x^4 + 20*x^7 - 32*x^8 - 70*x^13 + 80*x^14 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(18), 4), 72); A[1] + 4*A[2] - 8*A[4];
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ x QPochhammer[ x^3]^8 + 4 x^2 QPochhammer[ x^6]^8, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A)^8 + 4 * x * eta(x^6 + A)^8, n))};
    
  • Sage
    A = CuspForms( Gamma0(18), 4, prec=20).basis(); A[0] + 4*A[1] - 8*A[3];

Formula

a(n) is multiplicative with a(2^(2*k)) = (-8)^k, a(2^(2*k+1)) = 4 * (-8)^k, a(3^e) = 0^e, a(p^(2*k)) = (-p)^(3^k) and a(p^(2*k+1)) = 0 if p == 5 (mod 6), a(p^e) = a(p) * a(p^(e-1)) - p^3 * a(p^(e-2)) if p == 1 (mod 6).
a(3*n) = a(6*n + 5) = 0. a(3*n + 1) = A000731(n). a(4*n) = -8 * a(n). a(6*n + 1) = A153728(n).
Convolution square of A261277.

A161969 Expansion of f(q)^8 in powers of q where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 8, 20, 0, -70, -64, 56, 0, -125, 160, 308, 0, 110, 0, -520, 0, 57, -560, 0, 0, 182, 512, -880, 0, 1190, 448, 884, 0, 0, 0, -1400, 0, -1330, -1000, 1820, 0, -646, -1280, 0, 0, -1331, 2464, 380, 0, 1120, 0, 2576, 0, 0, 880, 1748, 0, -3850, 0, -3400, 0, 2703
Offset: 0

Views

Author

Michael Somos, Jun 22 2009

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 8*x + 20*x^2 - 70*x^4 - 64*x^5 + 56*x^6 - 1258*x^8 + ...
G.f. = q + 8*q^4 + 20*q^7 - 70*q^13 - 64*q^16 + 56*q^19 - 125*q^25 + 160*q^28 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(36), 4), 170); A[1] + 8*A[4] + 20*A[7] - 70*A[12]; /* Michael Somos, Sep 02 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^8, {x, 0, n}]; (* Michael Somos, Sep 06 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(-x + x * O(x^n))^8, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, A = factor(3*n + 1); (-1)^n * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, p%3==2, if( e%2, 0, (-1)^(e/2) * p^(3*e/2)), forstep( y=sqrtint(4*p\3), sqrtint(p\3), -1, if( issquare( 4*p - 3*y^2, &x), if( x%3!=2, x=-x); break)); a0=1; a1 = y = x * (x^2 - 3*p); for( i=2, e, x = y*a1 - p^3*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Sep 06 2015 */
    

Formula

Expansion of q^(-1/3) * (eta(q^2)^3 / (eta(q) * eta(q^4)))^8 in powers of q.
Euler transform of period 4 sequence [8, -16, 8, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 1296 (t/i)^4 f(t) where q = exp(2 Pi i t).
a(n) = b(3*n + 1) where b() is multiplicative with b(3^e) = 0^e, b(2^e) = (1+(-1)^e)/2 * -(-8)^(e/2) if e>0, b(p^e) = (1+(-1)^e)/2 * (-p^3)^(e/2) if p == 5 (mod 6), b(p^e) = b(p) * b(p^(e-1)) - b(p^(e-2)) * p^3 if p == 1 (mod 6) where b(p) = (x^2-3*p) * x, 4*p = x^2 + 3 * y^2, |x| < |y| and x == 2 (mod 3).
G.f.: Product_{k>0} (1 - (-x)^k)^8.
a(n) = (-1)^n * A000731(n).
a(4*n + 3) = a(16*n + 13) = 0. a(4*n + 1) = (-1)^n * 8 * a(n).
a(2*n) = A153728(n). - Michael Somos, Sep 06 2015

Extensions

Corrected by Charles R Greathouse IV, Sep 02 2009
Showing 1-4 of 4 results.