A154105 a(n) = 12*n^2 + 18*n + 7.
7, 37, 91, 169, 271, 397, 547, 721, 919, 1141, 1387, 1657, 1951, 2269, 2611, 2977, 3367, 3781, 4219, 4681, 5167, 5677, 6211, 6769, 7351, 7957, 8587, 9241, 9919, 10621, 11347, 12097, 12871, 13669, 14491, 15337, 16207, 17101, 18019, 18961, 19927, 20917, 21931
Offset: 0
Examples
a(2) = 12*2^2 + 18*2 + 7 = 91 = 6*14 + 7 = 6*A014106(2) + 7. a(3) = a(2) + 24*3 + 6 = 91 + 72 + 6 = 169. a(-4) = 12*4^2 - 18*4 + 7 = 127 = 2*64 - 1 = 2*A085473(3) - 1.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- John Elias, Animated Illustration: Starburst Hexagrams
- Leo Tavares, Illustration: Hexagonal Halos
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[ 12*n^2+18*n+7: n in [0..40] ];
-
Mathematica
Table[12*n^2 + 18*n + 7, {n, 0, 42}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *) LinearRecurrence[{3,-3,1}, {7,37,91}, 25] (* G. C. Greubel, Sep 02 2016 *)
-
PARI
a(n)=12*n^2+18*n+7 \\ Charles R Greathouse IV, Sep 02 2016
Formula
G.f.: (7 + 16*x + x^2)/(1-x)^3.
a(n) = 6*A014106(n) + 7.
a(0) = 7; for n > 0, a(n) = a(n-1) + 24*n + 6.
a(-n-1) = 2*A085473(n) - 1. - Bruno Berselli, Sep 05 2011
E.g.f.: (7 + 30*x + 12*x^2)*exp(x). - G. C. Greubel, Sep 02 2016
a(n) = 1 + A152746(n+1). - Omar E. Pol, May 08 2018
Comments