cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154105 a(n) = 12*n^2 + 18*n + 7.

Original entry on oeis.org

7, 37, 91, 169, 271, 397, 547, 721, 919, 1141, 1387, 1657, 1951, 2269, 2611, 2977, 3367, 3781, 4219, 4681, 5167, 5677, 6211, 6769, 7351, 7957, 8587, 9241, 9919, 10621, 11347, 12097, 12871, 13669, 14491, 15337, 16207, 17101, 18019, 18961, 19927, 20917, 21931
Offset: 0

Views

Author

Klaus Brockhaus, Jan 04 2009

Keywords

Comments

a(n) is the number of partitions with three integral dissimilar components of the number 12(n+1), e.g for n=0, 12 may be partitioned in the 7 ways (1,2,9), (1,3,8), (1,4,7), (1,5,6), (2,3,7), (2,4,6) and (3,4,5). - Ian Duff, Jan 31 2010
Sequence found by reading the line from 7, in the direction 7, 37, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, May 08 2018

Examples

			a(2) = 12*2^2 + 18*2 + 7 = 91 = 6*14 + 7 = 6*A014106(2) + 7.
a(3) = a(2) + 24*3 + 6 = 91 + 72 + 6 = 169.
a(-4) = 12*4^2 - 18*4 + 7 = 127 = 2*64 - 1 = 2*A085473(3) - 1.
		

Crossrefs

Programs

Formula

G.f.: (7 + 16*x + x^2)/(1-x)^3.
a(n) = 6*A014106(n) + 7.
a(0) = 7; for n > 0, a(n) = a(n-1) + 24*n + 6.
a(-n-1) = 2*A085473(n) - 1. - Bruno Berselli, Sep 05 2011
E.g.f.: (7 + 30*x + 12*x^2)*exp(x). - G. C. Greubel, Sep 02 2016
a(n) = 1 + A152746(n+1). - Omar E. Pol, May 08 2018
a(n) = A003215(n) + 6*A000290(n+1) + 6*A000217(n). - Leo Tavares, Sep 12 2022