A154140 Indices k such that 6 plus the k-th triangular number is a perfect square.
2, 4, 19, 29, 114, 172, 667, 1005, 3890, 5860, 22675, 34157, 132162, 199084, 770299, 1160349, 4489634, 6763012, 26167507, 39417725, 152515410, 229743340, 888924955, 1339042317, 5181034322, 7804510564, 30197280979, 45488021069, 176002651554, 265123615852
Offset: 1
Keywords
Examples
2*(2+1)/2+6 = 3^2. 4*(4+1)/2+6 = 4^2. 19*(19+1)/2+6 = 14^2. 29*(29+1)/2+6 = 21^2.
Links
- F. T. Adams-Watters, SeqFan Discussion, Oct 2009.
- Index entries for linear recurrences with constant coefficients, signature (1, 6, -6, -1, 1).
Programs
-
Magma
[2] cat [n: n in [0..2*10^7] | (Ceiling(Sqrt(n*(n + 1)/2)) )^2 - n*(n + 1)/2 eq 6]; // Vincenzo Librandi, Sep 03 2016
-
Mathematica
LinearRecurrence[{1,6,-6,-1,1},{2,4,19,29,114},40] (* Following first conjecture *) (* Harvey P. Dale, Apr 11 2016 *) Join[{2}, Select[Range[1, 1010], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 6 &] ] (* G. C. Greubel, Sep 03 2016 *)
Formula
{k: 6+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(2 +2*x +3*x^2 -2*x^3 -3*x^4)/((1-x)* (x^2-2*x-1)* (x^2+2*x-1))
G.f.: ( 6 + (-1 -4*x)/(x^2+2*x-1) + (6 +13*x)/(x^2-2*x-1) + 1/(x-1) )/2. (End)
a(1..4) = (2,4,19,29); a(n) = 6*a(n-2) - a(n-4) + 2, for n > 4. - Ctibor O. Zizka, Nov 10 2009
Extensions
a(17)-a(24) from Donovan Johnson, Nov 01 2010
a(25)-a(30) from Lars Blomberg, Jul 07 2015
Comments