cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154140 Indices k such that 6 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

2, 4, 19, 29, 114, 172, 667, 1005, 3890, 5860, 22675, 34157, 132162, 199084, 770299, 1160349, 4489634, 6763012, 26167507, 39417725, 152515410, 229743340, 888924955, 1339042317, 5181034322, 7804510564, 30197280979, 45488021069, 176002651554, 265123615852
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Comments

In general, indices k such that A001109(2j) plus the k-th triangular number is a perfect square may be found as follows:
b(2n-1) = A001652(n+j-1) - A001653(n-j);
b(2n) = A001652(n-j-1) + A001653(n+j);
Indices k such that A001109(2j-1) plus the k-th triangular number is a perfect square may be found as follows:
b(2n-1) = A001652(n+j-1) - A001653(n-j+1);
b(2n) = A001652(n-j) + A001653(n+j). - Charlie Marion, Mar 10 2011

Examples

			2*(2+1)/2+6 = 3^2. 4*(4+1)/2+6 = 4^2. 19*(19+1)/2+6 = 14^2. 29*(29+1)/2+6 = 21^2.
		

Crossrefs

Programs

  • Magma
    [2] cat [n: n in [0..2*10^7] | (Ceiling(Sqrt(n*(n + 1)/2)) )^2 - n*(n + 1)/2 eq  6]; // Vincenzo Librandi, Sep 03 2016
  • Mathematica
    LinearRecurrence[{1,6,-6,-1,1},{2,4,19,29,114},40] (* Following first conjecture *) (* Harvey P. Dale, Apr 11 2016 *)
    Join[{2}, Select[Range[1, 1010], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 6 &] ] (* G. C. Greubel, Sep 03 2016 *)

Formula

{k: 6+k*(k+1)/2 in A000290}.
a(2*n-1) = A001652(n) - A001653(n-1).
a(2*n) = A001652(n-2) + A001653(n+1).
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(2 +2*x +3*x^2 -2*x^3 -3*x^4)/((1-x)* (x^2-2*x-1)* (x^2+2*x-1))
G.f.: ( 6 + (-1 -4*x)/(x^2+2*x-1) + (6 +13*x)/(x^2-2*x-1) + 1/(x-1) )/2. (End)
a(1..4) = (2,4,19,29); a(n) = 6*a(n-2) - a(n-4) + 2, for n > 4. - Ctibor O. Zizka, Nov 10 2009

Extensions

a(17)-a(24) from Donovan Johnson, Nov 01 2010
a(25)-a(30) from Lars Blomberg, Jul 07 2015