A154153 Numbers k such that 28 plus the k-th triangular number is a perfect square.
6, 8, 47, 57, 278, 336, 1623, 1961, 9462, 11432, 55151, 66633, 321446, 388368, 1873527, 2263577, 10919718, 13193096, 63644783, 76895001, 370948982, 448176912, 2162049111, 2612166473, 12601345686, 15224821928, 73446025007, 88736765097, 428074804358, 517195768656
Offset: 1
Keywords
Examples
6, 8, 47, and 57 are terms: 6* (6+1)/2 + 28 = 7^2, 8* (8+1)/2 + 28 = 8^2, 47*(47+1)/2 + 28 = 34^2, 57*(57+1)/2 + 28 = 41^2.
Links
- F. T. Adams-Watters, SeqFan Discussion, Oct 2009
- David A. Corneth, Conjectured formula for a(n)
Crossrefs
Programs
-
Mathematica
Join[{6, 8}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 28 &]] (* G. C. Greubel, Sep 03 2016 *)
-
PARI
{for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 28), print1(n, ", ") ) );}
Formula
{k: 28+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-6-2*x-3*x^2+2*x^3+7*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 14 + 1/(x-1) + (14+29*x)/(x^2-2*x-1) + (-1-12*x)/(x^2+2*x-1) )/2. (End)
See also the Corneth link - David A. Corneth, Mar 18 2019
Extensions
a(21)-a(30) from Amiram Eldar, Mar 18 2019
Comments