cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A154153 Numbers k such that 28 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

6, 8, 47, 57, 278, 336, 1623, 1961, 9462, 11432, 55151, 66633, 321446, 388368, 1873527, 2263577, 10919718, 13193096, 63644783, 76895001, 370948982, 448176912, 2162049111, 2612166473, 12601345686, 15224821928, 73446025007, 88736765097, 428074804358, 517195768656
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			6, 8, 47, and 57 are terms:
   6* (6+1)/2 + 28 =  7^2,
   8* (8+1)/2 + 28 =  8^2,
  47*(47+1)/2 + 28 = 34^2,
  57*(57+1)/2 + 28 = 41^2.
		

Crossrefs

Cf. A001108 (0), A006451 (1), A154138 (3), A154139 (4), A154140 (6), A154141 (8), A154142 (9), A154143 (10), A154144 (13), A154145 (15), A154146 (16), A154147 (19), A154148 (21), A154149 (22), A154150(24), A154151 (25), A154151 (26), this sequence (28), A154154 (30).

Programs

  • Mathematica
    Join[{6, 8}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 28 &]] (* G. C. Greubel, Sep 03 2016 *)
  • PARI
    {for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 28), print1(n, ", ") ) );}

Formula

{k: 28+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-6-2*x-3*x^2+2*x^3+7*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 14 + 1/(x-1) + (14+29*x)/(x^2-2*x-1) + (-1-12*x)/(x^2+2*x-1) )/2. (End)
See also the Corneth link - David A. Corneth, Mar 18 2019

Extensions

a(21)-a(30) from Amiram Eldar, Mar 18 2019

A175032 a(n) is the difference between the n-th triangular number and the next perfect square.

Original entry on oeis.org

0, 0, 1, 3, 6, 1, 4, 8, 0, 4, 9, 15, 3, 9, 16, 1, 8, 16, 25, 6, 15, 25, 3, 13, 24, 36, 10, 22, 35, 6, 19, 33, 1, 15, 30, 46, 10, 26, 43, 4, 21, 39, 58, 15, 34, 54, 8, 28, 49, 0, 21, 43, 66, 13, 36, 60, 4, 28, 53, 79, 19, 45, 72, 9, 36, 64, 93, 26, 55, 85, 15, 45, 76, 3, 34, 66, 99, 22
Offset: 0

Views

Author

Ctibor O. Zizka, Nov 09 2009

Keywords

Comments

All terms are from {0} U A175035. No terms are from A175034.
The sequence consists of ascending runs of length 3 or 4. The first run starts at n = 1 and thereafter the k-th run starts at n = A214858(k - 1). - John Tyler Rascoe, Nov 05 2022

Crossrefs

Cf. sequences where a(m)=k: A001108 (0), A006451 (1), A154138 (3), A154139 (4), A154140 (6), A154141 (8), A154142 (9), A154143 (10), A154144 (13), A154145 (15), A154146 (16), A154147 (19), A154148 (21), A154149 (22), A154150(24), A154151 (25), A154151 (26), A154153(28), A154154 (30).

Programs

  • Mathematica
    Ceiling[Sqrt[#]]^2-#&/@Accumulate[Range[0,80]] (* Harvey P. Dale, Aug 25 2013 *)
  • PARI
    a(n) = my(t=n*(n+1)/2); if (issquare(t), 0, (sqrtint(t)+1)^2 - t); \\ Michel Marcus, Nov 06 2022

Formula

a(n) = (ceiling(sqrt(n*(n+1)/2)))^2 - n*(n+1)/2. - Ctibor O. Zizka, Nov 09 2009
a(n) = A080819(n) - A000217(n). - R. J. Mathar, Aug 24 2010

Extensions

Erroneous formula variant deleted and offset set to zero by R. J. Mathar, Aug 24 2010

A175034 Offsets i such that i + n*(n+1)/2 is never a perfect square for any n>0.

Original entry on oeis.org

2, 5, 7, 11, 12, 14, 17, 18, 20, 23, 27, 29, 31, 32, 37, 38, 40, 41, 42, 44, 47, 50, 51, 52, 56, 57, 59, 62, 65, 67, 68, 69, 70, 73, 74, 77, 82, 83, 84, 86, 87, 88, 92, 95, 96, 98, 101, 102, 104, 107, 109, 110, 112, 113, 117, 119, 122, 125, 126, 127, 128, 131, 132, 135, 137, 139
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 10 2009

Keywords

Comments

Complement of A175035.

Crossrefs

Extensions

Extended by R. J. Mathar, Nov 26 2009

A154132 Minimal exponents m such that the fractional part of (4/3)^m increases monotonically (when starting with m=1).

Original entry on oeis.org

1, 2, 8, 39, 2495, 3895, 4714, 8592
Offset: 1

Views

Author

Hieronymus Fischer, Jan 11 2009

Keywords

Comments

Recursive definition: a(1)=1, a(n) = least number m>a(n-1) such that the fractional part of (4/3)^m is greater than the fractional part of (4/3)^k for all k, 1<=k
The next such number must be greater than 200000.

Examples

			a(4)=39, since fract((4/3)^39)= 0.999186..., but fract((4/3)^k)<0.9887... for 1<=k<=38; thus fract((4/3)^39)>fract((4/3)^k) for 1<=k<39 and 39 is the minimal exponent > 8 with this property.
		

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract((4/3)^m) > fract((4/3)^a(k-1))}, where fract(x) = x-floor(x).
Showing 1-4 of 4 results.