A154346 a(n) = 12*a(n-1) - 28*a(n-2) for n > 1, with a(0)=1, a(1)=12.
1, 12, 116, 1056, 9424, 83520, 738368, 6521856, 57587968, 508443648, 4488860672, 39629905920, 349870772224, 3088811900928, 27269361188864, 240745601040384, 2125405099196416, 18763984361226240, 165656469557215232
Offset: 0
Links
- R. J. Mathar, Table of n, a(n) for n = 0..100
- Index entries for linear recurrences with constant coefficients, signature (12, -28).
Crossrefs
Programs
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-2); S:=[ ((6+2*r)^n-(6-2*r)^n)/(4*r): n in [1..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009 -
Mathematica
Join[{a=1,b=12},Table[c=12*b-28*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011 *) LinearRecurrence[{12,-28},{1,12},20] (* Harvey P. Dale, May 23 2012 *) Rest@ CoefficientList[Series[x/(1 - 12 x + 28 x^2), {x, 0, 19}], x] (* Michael De Vlieger, Sep 13 2016 *)
-
PARI
a(n)=([0,1; -28,12]^(n-1)*[1;12])[1,1] \\ Charles R Greathouse IV, Sep 13 2016
-
Sage
[lucas_number1(n,12,28) for n in range(1, 20)] # Zerinvary Lajos, Apr 27 2009
Formula
a(n) = 12*a(n-1) - 28*a(n-2) for n > 1. - Philippe Deléham, Jan 12 2009
a(n) = ( (6 + 2*sqrt(2))^n - (6 - 2*sqrt(2))^n )/(4*sqrt(2)).
G.f.: x/(1 - 12*x + 28*x^2). - Klaus Brockhaus, Jan 12 2009, corrected Oct 08 2009
E.g.f.: (1/(2*sqrt(2)))*exp(6*x)*sinh(2*sqrt(2)*x). - G. C. Greubel, Sep 13 2016
a(n) =2^(n-1)*A081179(n). - R. J. Mathar, Feb 04 2021
Extensions
Extended beyond a(7) by Klaus Brockhaus, Jan 12 2009
Edited by Klaus Brockhaus, Oct 08 2009
Offset corrected. - R. J. Mathar, Jun 19 2021
Comments