A154372 Triangle T(n,k) = (k+1)^(n-k)*binomial(n,k).
1, 1, 1, 1, 4, 1, 1, 12, 9, 1, 1, 32, 54, 16, 1, 1, 80, 270, 160, 25, 1, 1, 192, 1215, 1280, 375, 36, 1, 1, 448, 5103, 8960, 4375, 756, 49, 1, 1, 1024, 20412, 57344, 43750, 12096, 1372, 64, 1
Offset: 0
Examples
With the array M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins /1 \ /1 \ /1 \ /1 \ |1 1 ||0 1 ||0 1 | |1 1 | |1 3 1 ||0 1 1 ||0 0 1 |... = |1 4 1 | |1 6 5 1 ||0 1 3 1 ||0 0 1 1 | |1 12 9 1| |... ||0 1 6 5 1 ||0 0 1 3 1| |... | |... ||... ||... | | | - _Peter Bala_, Jan 13 2015
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1274
- Peter Bala, A 3 parameter family of generalized Stirling numbers
- Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
Programs
-
Magma
/* As triangle */ [[(k+1)^(n-k)*Binomial(n,k) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 15 2016
-
Mathematica
T[n_, k_] := (k + 1)^(n - k)*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 15 2016 *)
Formula
T(n,k) = (k+1)^(n-k)*binomial(n,k). k!*T(n,k) gives the entries for A152818 read as a triangular array.
E.g.f.: exp(x*(1+t*exp(x))) = 1 + (1+t)*x + (1+4*t+t^2)*x^2/2! + (1+12*t+9*t^2+t*3)*x^3/3! + .... O.g.f.: Sum_{k>=1} (t*x)^(k-1)/(1-k*x)^k = 1 + (1+t)*x + (1+4*t+t^2)*x^2 + .... Row sums are A080108. - Peter Bala, Oct 09 2011
From Peter Bala, Jan 14 2015: (Start)
Recurrence equation: T(n+1,k+1) = T(n,k+1) + Sum_{j = 0..n-k} (j + 1)*binomial(n,j)*T(n-j,k) with T(n,0) = 1 for all n.
Comments