A154602 Exponential Riordan array [exp(sinh(x)*exp(x)), sinh(x)*exp(x)].
1, 1, 1, 3, 4, 1, 11, 19, 9, 1, 49, 104, 70, 16, 1, 257, 641, 550, 190, 25, 1, 1539, 4380, 4531, 2080, 425, 36, 1, 10299, 32803, 39515, 22491, 6265, 833, 49, 1, 75905, 266768, 365324, 247072, 87206, 16016, 1484, 64, 1, 609441, 2337505, 3575820, 2792476, 1192086, 281190, 36204, 2460, 81, 1
Offset: 0
Examples
Triangle begins 1; 1, 1; 3, 4, 1; 11, 19, 9, 1; 49, 104, 70, 16, 1; 257, 641, 550, 190, 25, 1; 1539, 4380, 4531, 2080, 425, 36, 1; Production matrix of this array is 1, 1, 2, 3, 1, 0, 4, 5, 1, 0, 0, 6, 7, 1, 0, 0, 0, 8, 9, 1, 0, 0, 0, 0, 10, 11, 1 with generating function exp(t*x)*(1+t)*(1+2*x).
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A154602:= func< n,k | (&+[2^(n-j)*Binomial(j,k)*StirlingSecond(n,j): j in [k..n]]) >; [A154602(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 19 2024
-
Maple
A154602 := (n, k) -> add(2^(n-j) * binomial(j, k) * Stirling2(n, j), j = k..n): for n from 0 to 6 do seq(A154602(n, k), k = 0..n) od; # Peter Luschny, Dec 13 2022
-
Mathematica
(* The function RiordanArray is defined in A256893. *) RiordanArray[Exp[Sinh[#] Exp[#]]&, Sinh[#] Exp[#]&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
SageMath
def A154602(n,k): return sum(2^(n-j)*binomial(j,k)* stirling_number2(n,j) for j in range(k,n+1)) flatten([[A154602(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 19 2024
Formula
T(n, 0) = A004211(n).
Sum_{k=0..n} T(n, k) = A055882(n) (row sums).
From Peter Bala, Jun 15 2009: (Start)
T(n,k) = Sum_{i = k..n} 2^(n-i)*binomial(i,k)*Stirling2(n,i).
E.g.f.: exp((t+1)/2*(exp(2*x)-1)) = 1 + (1+t)*x + (3+4*t+t^2)*x^2/2! + ....
Row generating polynomials R_n(x):
R_n(x) = 2^n*Bell(n,(x+1)/2), where Bell(n,x) = Sum_{k = 0..n} Stirling2(n, k)*x^k denotes the n-th Bell polynomial.
Recursion:
R(n+1,x) = (x+1)*(R_n(x) + 2*d/dx(R_n(x))).
(End)
Recurrence: T(n,k) = 2*(k+1)*T(n-1,k+1) + (2*k+1)*T(n-1,k) + T(n-1,k-1). - Emanuele Munarini, Apr 14 2020
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n). - G. C. Greubel, Sep 19 2024
E.g.f. of column k (with leading zeros): f(x)^k * exp(f(x)) / k! with f(x) = (exp(2*x) - 1)/2. - Seiichi Manyama, Apr 19 2025
Comments