cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154602 Exponential Riordan array [exp(sinh(x)*exp(x)), sinh(x)*exp(x)].

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 11, 19, 9, 1, 49, 104, 70, 16, 1, 257, 641, 550, 190, 25, 1, 1539, 4380, 4531, 2080, 425, 36, 1, 10299, 32803, 39515, 22491, 6265, 833, 49, 1, 75905, 266768, 365324, 247072, 87206, 16016, 1484, 64, 1, 609441, 2337505, 3575820, 2792476, 1192086, 281190, 36204, 2460, 81, 1
Offset: 0

Views

Author

Paul Barry, Jan 12 2009

Keywords

Comments

Triangle T(n,k), read by rows, given by [1,2,1,4,1,6,1,8,1,10,1,12,1,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 02 2009

Examples

			Triangle begins
     1;
     1,    1;
     3,    4,    1;
    11,   19,    9,    1;
    49,  104,   70,   16,   1;
   257,  641,  550,  190,  25,  1;
  1539, 4380, 4531, 2080, 425, 36, 1;
Production matrix of this array is
  1,  1,
  2,  3,  1,
  0,  4,  5,  1,
  0,  0,  6,  7,  1,
  0,  0,  0,  8,  9,  1,
  0,  0,  0,  0, 10, 11,  1
with generating function exp(t*x)*(1+t)*(1+2*x).
		

Crossrefs

Columns k=0..3 give A000007, A383203, A383204, A383205.
Cf. A004211 (first column), A256893.
Sums include: A000007 (alternating sign row), A055882 (row sums).

Programs

  • Magma
    A154602:= func< n,k | (&+[2^(n-j)*Binomial(j,k)*StirlingSecond(n,j): j in [k..n]]) >;
    [A154602(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 19 2024
    
  • Maple
    A154602 := (n, k) -> add(2^(n-j) * binomial(j, k) * Stirling2(n, j), j = k..n): for n from 0 to 6 do seq(A154602(n, k), k = 0..n) od; # Peter Luschny, Dec 13 2022
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[Exp[Sinh[#] Exp[#]]&, Sinh[#] Exp[#]&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
  • SageMath
    def A154602(n,k): return sum(2^(n-j)*binomial(j,k)* stirling_number2(n,j) for j in range(k,n+1))
    flatten([[A154602(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 19 2024

Formula

T(n, 0) = A004211(n).
Sum_{k=0..n} T(n, k) = A055882(n) (row sums).
From Peter Bala, Jun 15 2009: (Start)
T(n,k) = Sum_{i = k..n} 2^(n-i)*binomial(i,k)*Stirling2(n,i).
E.g.f.: exp((t+1)/2*(exp(2*x)-1)) = 1 + (1+t)*x + (3+4*t+t^2)*x^2/2! + ....
Row generating polynomials R_n(x):
R_n(x) = 2^n*Bell(n,(x+1)/2), where Bell(n,x) = Sum_{k = 0..n} Stirling2(n, k)*x^k denotes the n-th Bell polynomial.
Recursion:
R(n+1,x) = (x+1)*(R_n(x) + 2*d/dx(R_n(x))).
(End)
Recurrence: T(n,k) = 2*(k+1)*T(n-1,k+1) + (2*k+1)*T(n-1,k) + T(n-1,k-1). - Emanuele Munarini, Apr 14 2020
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n). - G. C. Greubel, Sep 19 2024
E.g.f. of column k (with leading zeros): f(x)^k * exp(f(x)) / k! with f(x) = (exp(2*x) - 1)/2. - Seiichi Manyama, Apr 19 2025