cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A154936 Primes in A154935.

Original entry on oeis.org

7, 199, 211, 337, 367, 1231, 1321, 1627, 1741, 2161, 2251, 2551, 3259, 3769, 3877, 3931, 4099, 4591, 4759, 4789, 6829, 7297, 7867, 8221, 8887, 9049, 9181, 9337, 9349, 11959, 12697, 12919, 13411, 13591, 14827, 15187, 15217, 15817, 15877, 15889
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={}; Do[p=n^7-2; If[PrimeQ[p], If[PrimeQ[n], AppendTo[lst,n]]], {n,0,8!}]; lst

A255246 Fundamental positive solution y = y1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A038873(n), n>=1 (primes congruent to {1,2,7} mod 8).

Original entry on oeis.org

3, 2, 3, 4, 4, 5, 6, 6, 7, 8, 7, 7, 8, 9, 8, 9, 10, 12, 10, 11, 10, 14, 11, 12, 11, 13, 12, 14, 15, 14, 13, 13, 17, 18, 14, 14, 15, 17, 16, 19, 20, 15, 17, 16, 18, 16, 16, 21, 17, 17, 21, 18, 19, 22, 23, 20, 19, 18, 19, 20, 26, 22, 20, 21, 23, 25, 26, 28, 21
Offset: 1

Views

Author

Wolfdieter Lang, Feb 25 2015

Keywords

Comments

For the corresponding term x1(n) see A255235(n).
For the primes 1 (mod 8) see A154935, and for the primes 7 (mod 8) see 2*A255232.
See A254934 and A254938 also for the derivation based on the Nagell reference given there.

Examples

			See A255235.
n = 1: 4^2 - 2*3^2 = -2 = -A038873(1),
n = 3: 1^2 - 2*3^2 = 1 - 18 = -17 = -A038873(3).
		

Crossrefs

Formula

A255235(n)^2 - 2*a(n)^2 = -A038873(n) gives the smallest positive (proper) solution of this (generalized) Pell equation.

Extensions

More terms from Colin Barker, Feb 26 2015

A071351 Numbers n such that both n^4 + 2 and n^4 - 2 are prime.

Original entry on oeis.org

3, 21, 87, 99, 129, 141, 279, 627, 657, 777, 783, 795, 1653, 1725, 1833, 1959, 2001, 2043, 3039, 3399, 3609, 3861, 3975, 4257, 4371, 4491, 5403, 5541, 5709, 5985, 7371, 7539, 7869, 7917, 8397, 8445, 8547, 8793, 9051, 9057, 9915, 9933, 11067, 12153
Offset: 1

Views

Author

Labos Elemer, May 21 2002

Keywords

Examples

			n=3: n^4 = 81; {79,83} are primes.
		

Crossrefs

Programs

  • Mathematica
    lst={}; Do[p1=n^4-2; p2=n^4+2; If[PrimeQ[p1]&&PrimeQ[p2],AppendTo[lst,n]],{n,0,8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 17 2009 *)
    Select[Range[730000], AllTrue[#^4 + {2, -2}, PrimeQ] &] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 02 2018 *)

A154938 Numbers k such that k^6 - 2 and k^6 + 2 are both primes.

Original entry on oeis.org

195, 213, 231, 657, 1563, 1749, 2967, 3597, 3627, 4263, 4887, 6867, 6993, 7257, 7725, 9045, 9201, 9717, 11595, 12579, 13029, 14145, 14259, 14367, 15837, 16131, 16581, 17259, 19905, 19917, 21081, 21711, 23127, 24435, 24921, 28299, 28707
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..500] | IsPrime(n^6-2) and IsPrime(n^6+2)]; // Vincenzo Librandi, Nov 26 2010
  • Mathematica
    lst={};Do[p1=n^6-2;p2=n^6+2;If[PrimeQ[p1]&&PrimeQ[p2],AppendTo[lst,n]],{n,0,9!}];lst
    Select[Range[30000],AllTrue[#^6+{2,-2},PrimeQ]&] (* Harvey P. Dale, Jun 21 2025 *)

A216945 Numbers k such that k-2, k^2-2, k^3-2, k^4-2 and k^5-2 are all prime.

Original entry on oeis.org

15331, 289311, 487899, 798385, 1685775, 1790991, 1885261, 1920619, 1967925, 2304805, 2479735, 3049201, 3114439, 3175039, 3692065, 4095531, 4653649, 5606349, 5708235, 6113745, 6143235, 6697425, 7028035, 7461601, 8671585, 8997121, 9260131, 10084915, 10239529
Offset: 1

Views

Author

Michel Lagneau, Sep 20 2012

Keywords

Comments

k^6-2 is also prime for k = 1685775, 4095531, 4653649, 5606349, 13219339, 13326069, 18439561, ...
Sequence is infinite under Schinzel's Hypothesis H. a(n) >> n log^5 n. - Charles R Greathouse IV, Sep 20 2012

Crossrefs

Programs

  • Mathematica
    Select[Range[20000000], And@@PrimeQ/@(Table[n^i-2, {i, 1, 5}]/.n->#)&]
    Select[Prime[Range[680000]]+2,AllTrue[#^Range[2,5]-2,PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 11 2020 *)

Formula

Sequence is A052147 intersection A028870 intersection A038599 intersection A154831 intersection A154833.
Showing 1-5 of 5 results.