cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154955 a(1) = 1, a(2) = -1, followed by 0, 0, 0, ... .

Original entry on oeis.org

1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mats Granvik, Jan 18 2009

Keywords

Comments

Matrix inverse of A000012.
Moebius transform of the sequence A000035. Dirichlet inverse of A209229. Partial sums of a(n) is characteristic function of 1 (A063524). a(n)=(-1)^(n+1)*A019590(n). a(n) for n >= 1 is Dirichlet convolution of following functions b(n), c(n), a(n) = Sum_{d|n} b(d)*c(n/d): a(n) = A000012(n) * A092673(n). Examples of Dirichlet convolutions with function a(n), i.e. b(n) = Sum_{d|n} a(d)*c(n/d): a(n) * A000012(n) = A000035(n), a(n) * A000027(n) = A026741(n), a(n) * A008683(n) = A092673(n), a(n) * A036987(n-1) = A063524(n), a(n) * A000005(n) = A001227(n). - Jaroslav Krizek, Mar 21 2009
The Kn21 sums, see A180662, of triangle A108299 equal the terms of this sequence. - Johannes W. Meijer, Aug 14 2011
{a(n-1)}A132393.%20-%20_Wolfdieter%20Lang">{n>=1}, gives the alternating row sums of A132393. - _Wolfdieter Lang, May 09 2017
With offset 0 the alternating row sums of A097805. - Peter Luschny, Sep 07 2017

Crossrefs

Programs

Formula

G.f.: A(x) = x - x^2 = x / (1 + x / (1 - x)). - Michael Somos, Jan 03 2013
a(n) = (2/sqrt(3))*sin((2*Pi/3)*n!). - Lorenzo Pinlac, Jan 16 2022
a(n) = [n = 1] - [n = 2], where [] is the Iverson bracket. - Wesley Ivan Hurt, Jun 22 2024
Multiplicative with a(2) = -1, a(2^e) = 0 if e > 1, a(p^e) = 0 if p > 2. - Antti Karttunen, Dec 17 2024

Extensions

Keyword:mult added by Antti Karttunen, Dec 17 2024