cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A132372 T(n, k) counts Schroeder n-paths whose ascent starting at the initial vertex has length k. Triangle T(n,k), read by rows.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 10, 5, 1, 22, 38, 22, 7, 1, 90, 158, 98, 38, 9, 1, 394, 698, 450, 194, 58, 11, 1, 1806, 3218, 2126, 978, 334, 82, 13, 1, 8558, 15310, 10286, 4942, 1838, 526, 110, 15, 1, 41586, 74614, 50746, 25150, 9922, 3142, 778, 142, 17, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 20 2007

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows given by [1,1,2,1,2,1,2,1,2,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938 .
Transpose of triangular array A033878. - Michel Marcus, May 02 2015
The triangle is the Riordan square (A321620) of A155069. - Peter Luschny, Feb 01 2020

Examples

			Triangle begins:
      1;
      1,     1;
      2,     3,     1;
      6,    10,     5,     1;
     22,    38,    22,     7,    1;
     90,   158,    98,    38,    9,    1;
    394,   698,   450,   194,   58,   11,   1;
   1806,  3218,  2126,   978,  334,   82,  13,   1;
   8558, 15310, 10286,  4942, 1838,  526, 110,  15,  1;
  41586, 74614, 50746, 25150, 9922, 3142, 778, 142, 17, 1 ; ...
...
The production matrix M begins:
  1, 1
  1, 2, 1
  1, 2, 2, 1
  1, 2, 2, 2, 1
  1, 2, 2, 2, 2, 1
  ...
		

Crossrefs

Cf. A006318, A103136 (signed version), A033878 (transpose).

Programs

  • Maple
    # The function RiordanSquare is defined in A321620.
    RiordanSquare((3-x-sqrt(1-6*x+x^2))/2, 10); # Peter Luschny, Feb 01 2020
    # Alternative:
    A132372 := proc(dim) # dim is the number of rows requested.
    local T, j, A, k, C, m; m := 1;
    T := [seq([seq(0, j = 0..k)], k = 0..dim-1)];
    A := [seq(ifelse(k = 0, 1 + x, 2 - irem(k, 2)), k = 0..dim-2)];
    C := [seq(1, k = 1..dim+1)]; C[1] := 0;
    for k from 0 to dim - 1 do
        for j from k + 1 by -1 to 2 do
            C[j] := C[j-1] + C[j+1] * A[j-1] od;
        T[m] := [seq(coeff(C[2], x, j), j = 0..k)];
        m := m + 1
    od; ListTools:-Flatten(T) end:
    A132372(10);  # Peter Luschny, Nov 16 2023

Formula

Sum_{k, 0<=k<=n} T(n,k) = A006318(n) .
T(n,0) = A155069(n). - Philippe Deléham, Nov 03 2009

A224071 Number of Schroeder paths of semilength n in which there are no (2,0)-steps at level 1.

Original entry on oeis.org

1, 2, 5, 15, 52, 201, 841, 3726, 17213, 82047, 400600, 1993377, 10071777, 51532938, 266462229, 1390174911, 7308741084, 38682855225, 205940368441, 1102091393574, 5925177392573, 31987877317887, 173337754977904
Offset: 0

Views

Author

Keywords

Comments

Hankel transform is A006215. Invert transform of A155069. - Michael Somos, Apr 02 2013

Examples

			a(2) = 5 because we have HH, UDH, HUD, UDUD and UUDD.
G.f. = 1 + 2*x + 5*x^2 + 15*x^3 + 52*x^4 + 201*x^5 + 841*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4/(3-5*x+Sqrt[x^2-6*x+1]), {x, 0, 20}], x] (* Vaclav Kotesovec, May 23 2013 *)
    a[ n_] := SeriesCoefficient[ (3 - 5 x - Sqrt[ 1 - 6 x + x^2]) / (2 - 6 x + 6 x^2), {x, 0, n}]; (* Michael Somos, Mar 28 2014 *)
  • Maxima
    a(n):=sum((k+1)*((-1)^floor((k+2)/3)+(-1)^floor((k+1)/3))*sum(binomial(n+1,n-k-i)*binomial(n+i,n),i,0,n-k),k,0,n)/(2*(n+1)); /* Vladimir Kruchinin, Mar 08 2016*/
  • PARI
    z='z+O('z^66); Vec(4/(3-5*z+sqrt(1-6*z+z^2))) /* Joerg Arndt, Mar 30 2013 */
    

Formula

G.f.: 4/(3-5*x+sqrt(1-6*x+x^2)).
Recurrence: n*a(n) = 9*(n-1)*a(n-1) - 2*(11*n-15)*a(n-2) + 3*(7*n-12)*a(n-3) - 3*(n-3)*a(n-4). - Vaclav Kotesovec, May 23 2013
a(n) ~ sqrt(884+627*sqrt(2)) * (3+2*sqrt(2))^n / (98*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, May 23 2013
0 = +a(n)*(+9*a(n+1) - 144*a(n+2) + 174*a(n+3) - 81*a(n+4) + 12*a(n+5)) + a(n+1)*(+18*a(n+1) + 399*a(n+2) - 597*a(n+3) + 318*a(n+4) - 57*a(n+5)) + a(n+2)*(-300*a(n+2) + 538*a(n+3) - 255*a(n+4) + 52*a(n+5)) + a(n+3)*(-126*a(n+3) + 73*a(n+4) - 18*a(n+5)) + a(n+4)*(+a(n+5)) if n>=0. - Michael Somos, Mar 28 2014
a(n) = Sum_{k=0..n}((k+1)*((-1)^floor((k+2)/3)+(-1)^floor((k+1)/3))*Sum_{i=0..n-k}(binomial(n+1,n-k-i)*binomial(n+i,n)))/(2*(n+1)). - Vladimir Kruchinin, Mar 08 2016

A167656 Triangle T(n,k), 0<=k<=n, read by rows given by [1,1,2,1,2,1,2,1,2,1,2,...] DELTA [1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 6, 16, 14, 4, 22, 68, 78, 40, 8, 90, 304, 410, 284, 104, 16, 394, 1412, 2122, 1776, 896, 256, 32, 1806, 6752, 10966, 10468, 6496, 2592, 608, 64, 8558, 33028, 56870, 59832, 43016, 21376, 7072, 1408, 128, 41586, 164512, 296498, 336252
Offset: 0

Views

Author

Philippe Deléham, Nov 08 2009

Keywords

Examples

			Triangle begins:
1 ;
1,1 ;
2,4,2 ;
6,16,14,4 ;
22,68,78,40,8 ;
90,304,410,284,104,16 ;
...
		

Crossrefs

Formula

T(n,0) = T(n-1,0) + T(n-1,1).
T(n,1) = T(n-1,0) + 3*T(n-1,1) + T(n-1,2).
T(n,k) = 2*T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k>1.

A176006 The number of branching configurations of RNA (see Sankoff, 1985) with n or fewer hairpins.

Original entry on oeis.org

1, 2, 4, 10, 32, 122, 516, 2322, 10880, 52466, 258564, 1296282, 6589728, 33887466, 175966212, 921353250, 4858956288, 25786112994, 137604139012, 737922992938, 3974647310112, 21493266631002, 116642921832964, 635074797251890
Offset: 0

Views

Author

Lee A. Newberg, Apr 05 2010

Keywords

Comments

a(n) is the number of dissections of a convex (n+2)-sided polygon by non-intersecting diagonals such that selected least two consecutive sides of the polygon will be in the same sub-polygon. - Muhammed Sefa Saydam, Jul 02 2025

Examples

			For n = 3, the a(3) = 10 branching configurations with 3 or fewer hairpins are: unfolded, (), ()(), (()()), ()()(), (()())(), ()(()()), (()()()), ((()())()), and (()(()())).
		

Crossrefs

The cumulative sums of A155069.

Programs

  • Mathematica
    CoefficientList[Series[(3-x-Sqrt[1-6*x+x^2])/(2*(1-x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    my(x='x+O('x^50)); Vec((3-x-sqrt(1-6*x+x^2))/(2*(1-x))) \\ G. C. Greubel, Mar 22 2017

Formula

G.f.: (3 - x - sqrt(1 - 6*x + x^2))/(2*(1 - x)).
Conjecture : n*a(n) +(9-7*n)*a(n-1) +(7*n-12)*a(n-2) +(3-n)*a(n-3)=0. - R. J. Mathar, Jul 24 2012
a(n) ~ 2^(1/4)*(3 + 2*sqrt(2))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
a(n) = Sum_{x+y=n+1} A006318(x), for y >= 2, x >= -1 and A006318(-1) = 1. - Muhammed Sefa Saydam, Jul 02 2025

A262607 Sum_{k=0..n} ((k+1)*binomial(n+1,k)*binomial(2*n-k,n))/(n+1).

Original entry on oeis.org

1, 3, 11, 47, 219, 1075, 5459, 28383, 150131, 804515, 4355163, 23768079, 130572363, 721247571, 4002344355, 22296869823, 124633584099, 698707769923, 3927060020651, 22121780745711, 124865811262139, 706065855417203, 3998950848888051
Offset: 0

Views

Author

Vladimir Kruchinin, Sep 26 2015

Keywords

Crossrefs

Cf. A155069.

Programs

  • Mathematica
    Table[Sum[(k + 1) Binomial[n + 1, k] Binomial[2 n - k, n]/(n + 1), {k,
    0, n}], {n, 0, 22}] (* Michael De Vlieger, Sep 26 2015 *)
  • Maxima
    A(x):=x*(3-x-sqrt(1-6*x+x^2))/2;
    taylor(-diff(A(x),x)/A(x)+diff(A(x),x,1)/x,x,0,27);

Formula

G.f.: (-2*x^2+7*x-1)/(2*x*sqrt(x^2-6*x+1))+1/(2*x)-1.
G.f. satisfies -A'(x)/A(x)+A'(x)/x, where A(x)/x is g.f. of A155069
-(n+1)*(2*n^2+5*n-6)*a(n) +6*(2*n^3+6*n^2-11*n+4)*a(n-1) -(n-2)*(2*n^2+9*n+1)*a(n-2)=0. - R. J. Mathar, Jul 21 2017
a(n) ~ (1 + sqrt(2))^(2*n) / (2^(5/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 10 2021

A341695 Regular triangle read by rows, T(n,k) = T(n,k-1)+2*T(n-1,k)-T(n-1,k-1) for 1<=k<=n-2 with T(n,n)=T(n,n-1)=T(n,n-2) for n>=3 and T(1,1)=T(2,1)=T(2,2)=1.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 6, 6, 6, 8, 16, 22, 22, 22, 16, 40, 68, 90, 90, 90, 32, 96, 192, 304, 394, 394, 394, 64, 224, 512, 928, 1412, 1806, 1806, 1806, 128, 512, 1312, 2656, 4552, 6752, 8558, 8558, 8558, 256, 1152, 3264, 7264, 13712, 22664, 33028, 41586, 41586, 41586
Offset: 1

Views

Author

Michel Marcus, Apr 12 2021

Keywords

Examples

			Triangle begins:
   1;
   1,  1;
   2,  2,  2;
   4,  6,  6,  6;
   8, 16, 22, 22, 22;
  16, 40, 68, 90, 90, 90;
  ...
		

Crossrefs

Cf. A011782 (1st column), A155069 (right diagonal).

Programs

  • PARI
    T(n,k) = if (k>=1, if (n<=2, 1, if (k<=n-2, T(n,k-1)+2*T(n-1,k)-T(n-1,k-1), T(n,n-2))));
    tabl(nn) = {for (n=1, nn, for (k=1, n, print1(T(n,k), ", ");); print;);}
Showing 1-6 of 6 results.