A132372
T(n, k) counts Schroeder n-paths whose ascent starting at the initial vertex has length k. Triangle T(n,k), read by rows.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 10, 5, 1, 22, 38, 22, 7, 1, 90, 158, 98, 38, 9, 1, 394, 698, 450, 194, 58, 11, 1, 1806, 3218, 2126, 978, 334, 82, 13, 1, 8558, 15310, 10286, 4942, 1838, 526, 110, 15, 1, 41586, 74614, 50746, 25150, 9922, 3142, 778, 142, 17, 1
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
6, 10, 5, 1;
22, 38, 22, 7, 1;
90, 158, 98, 38, 9, 1;
394, 698, 450, 194, 58, 11, 1;
1806, 3218, 2126, 978, 334, 82, 13, 1;
8558, 15310, 10286, 4942, 1838, 526, 110, 15, 1;
41586, 74614, 50746, 25150, 9922, 3142, 778, 142, 17, 1 ; ...
...
The production matrix M begins:
1, 1
1, 2, 1
1, 2, 2, 1
1, 2, 2, 2, 1
1, 2, 2, 2, 2, 1
...
-
# The function RiordanSquare is defined in A321620.
RiordanSquare((3-x-sqrt(1-6*x+x^2))/2, 10); # Peter Luschny, Feb 01 2020
# Alternative:
A132372 := proc(dim) # dim is the number of rows requested.
local T, j, A, k, C, m; m := 1;
T := [seq([seq(0, j = 0..k)], k = 0..dim-1)];
A := [seq(ifelse(k = 0, 1 + x, 2 - irem(k, 2)), k = 0..dim-2)];
C := [seq(1, k = 1..dim+1)]; C[1] := 0;
for k from 0 to dim - 1 do
for j from k + 1 by -1 to 2 do
C[j] := C[j-1] + C[j+1] * A[j-1] od;
T[m] := [seq(coeff(C[2], x, j), j = 0..k)];
m := m + 1
od; ListTools:-Flatten(T) end:
A132372(10); # Peter Luschny, Nov 16 2023
A224071
Number of Schroeder paths of semilength n in which there are no (2,0)-steps at level 1.
Original entry on oeis.org
1, 2, 5, 15, 52, 201, 841, 3726, 17213, 82047, 400600, 1993377, 10071777, 51532938, 266462229, 1390174911, 7308741084, 38682855225, 205940368441, 1102091393574, 5925177392573, 31987877317887, 173337754977904
Offset: 0
a(2) = 5 because we have HH, UDH, HUD, UDUD and UUDD.
G.f. = 1 + 2*x + 5*x^2 + 15*x^3 + 52*x^4 + 201*x^5 + 841*x^6 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. Bloom and S. Elizalde, Pattern avoidance in matchings and partitions, arXiv:1211.3442 [math.CO], 2012; Theorem 6.1.
- Paul Barry, A study of Integer Sequences, Riordan Arrays, Pascal-like Arrays and Hankel Transforms, Ph.D Thesis, University College, Cork, Republic of Ireland, 2009.
- Arnauld Mesinga Mwafise, Computational and Combinatorial Enumeration of Poset Matrices, 2024. See p. 8.
-
CoefficientList[Series[4/(3-5*x+Sqrt[x^2-6*x+1]), {x, 0, 20}], x] (* Vaclav Kotesovec, May 23 2013 *)
a[ n_] := SeriesCoefficient[ (3 - 5 x - Sqrt[ 1 - 6 x + x^2]) / (2 - 6 x + 6 x^2), {x, 0, n}]; (* Michael Somos, Mar 28 2014 *)
-
a(n):=sum((k+1)*((-1)^floor((k+2)/3)+(-1)^floor((k+1)/3))*sum(binomial(n+1,n-k-i)*binomial(n+i,n),i,0,n-k),k,0,n)/(2*(n+1)); /* Vladimir Kruchinin, Mar 08 2016*/
-
z='z+O('z^66); Vec(4/(3-5*z+sqrt(1-6*z+z^2))) /* Joerg Arndt, Mar 30 2013 */
A167656
Triangle T(n,k), 0<=k<=n, read by rows given by [1,1,2,1,2,1,2,1,2,1,2,...] DELTA [1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 6, 16, 14, 4, 22, 68, 78, 40, 8, 90, 304, 410, 284, 104, 16, 394, 1412, 2122, 1776, 896, 256, 32, 1806, 6752, 10966, 10468, 6496, 2592, 608, 64, 8558, 33028, 56870, 59832, 43016, 21376, 7072, 1408, 128, 41586, 164512, 296498, 336252
Offset: 0
Triangle begins:
1 ;
1,1 ;
2,4,2 ;
6,16,14,4 ;
22,68,78,40,8 ;
90,304,410,284,104,16 ;
...
A176006
The number of branching configurations of RNA (see Sankoff, 1985) with n or fewer hairpins.
Original entry on oeis.org
1, 2, 4, 10, 32, 122, 516, 2322, 10880, 52466, 258564, 1296282, 6589728, 33887466, 175966212, 921353250, 4858956288, 25786112994, 137604139012, 737922992938, 3974647310112, 21493266631002, 116642921832964, 635074797251890
Offset: 0
For n = 3, the a(3) = 10 branching configurations with 3 or fewer hairpins are: unfolded, (), ()(), (()()), ()()(), (()())(), ()(()()), (()()()), ((()())()), and (()(()())).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- David Sankoff, Simultaneous solution of the RNA folding, alignment and protosequence problems, SIAM J. Appl. Math 45(5) (1985), 810-825.
- David Sankoff, Simultaneous solution of the RNA folding, alignment and protosequence problems, SIAM J. Appl. Math 45(5) (1985), 810-825.
-
CoefficientList[Series[(3-x-Sqrt[1-6*x+x^2])/(2*(1-x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
-
my(x='x+O('x^50)); Vec((3-x-sqrt(1-6*x+x^2))/(2*(1-x))) \\ G. C. Greubel, Mar 22 2017
A262607
Sum_{k=0..n} ((k+1)*binomial(n+1,k)*binomial(2*n-k,n))/(n+1).
Original entry on oeis.org
1, 3, 11, 47, 219, 1075, 5459, 28383, 150131, 804515, 4355163, 23768079, 130572363, 721247571, 4002344355, 22296869823, 124633584099, 698707769923, 3927060020651, 22121780745711, 124865811262139, 706065855417203, 3998950848888051
Offset: 0
-
Table[Sum[(k + 1) Binomial[n + 1, k] Binomial[2 n - k, n]/(n + 1), {k,
0, n}], {n, 0, 22}] (* Michael De Vlieger, Sep 26 2015 *)
-
A(x):=x*(3-x-sqrt(1-6*x+x^2))/2;
taylor(-diff(A(x),x)/A(x)+diff(A(x),x,1)/x,x,0,27);
A341695
Regular triangle read by rows, T(n,k) = T(n,k-1)+2*T(n-1,k)-T(n-1,k-1) for 1<=k<=n-2 with T(n,n)=T(n,n-1)=T(n,n-2) for n>=3 and T(1,1)=T(2,1)=T(2,2)=1.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 4, 6, 6, 6, 8, 16, 22, 22, 22, 16, 40, 68, 90, 90, 90, 32, 96, 192, 304, 394, 394, 394, 64, 224, 512, 928, 1412, 1806, 1806, 1806, 128, 512, 1312, 2656, 4552, 6752, 8558, 8558, 8558, 256, 1152, 3264, 7264, 13712, 22664, 33028, 41586, 41586, 41586
Offset: 1
Triangle begins:
1;
1, 1;
2, 2, 2;
4, 6, 6, 6;
8, 16, 22, 22, 22;
16, 40, 68, 90, 90, 90;
...
-
T(n,k) = if (k>=1, if (n<=2, 1, if (k<=n-2, T(n,k-1)+2*T(n-1,k)-T(n-1,k-1), T(n,n-2))));
tabl(nn) = {for (n=1, nn, for (k=1, n, print1(T(n,k), ", ");); print;);}
Showing 1-6 of 6 results.
Comments