cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155865 Triangle T(n,k) = (n-1)*binomial(n-2, k-1) for 1 <= k <= n-1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 4, 12, 12, 4, 1, 1, 5, 20, 30, 20, 5, 1, 1, 6, 30, 60, 60, 30, 6, 1, 1, 7, 42, 105, 140, 105, 42, 7, 1, 1, 8, 56, 168, 280, 280, 168, 56, 8, 1, 1, 9, 72, 252, 504, 630, 504, 252, 72, 9, 1, 1, 10, 90, 360, 840, 1260, 1260, 840, 360, 90, 10, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 29 2009

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,   1;
  1, 3,  6,   3,   1;
  1, 4, 12,  12,   4,   1;
  1, 5, 20,  30,  20,   5,   1;
  1, 6, 30,  60,  60,  30,   6,   1;
  1, 7, 42, 105, 140, 105,  42,   7,  1;
  1, 8, 56, 168, 280, 280, 168,  56,  8, 1;
  1, 9, 72, 252, 504, 630, 504, 252, 72, 9, 1;
  ...
ConvOffs transform of (1, 1, 2, 3) = integers of row 4: (1, 3, 6, 3, 1). _Gary W. Adamson_, Jul 09 2012
		

Crossrefs

Cf. A002457 (T(2*n, n)), A155863, A155864.

Programs

  • Magma
    A155865:= func< n,k | k eq 0 or k eq n select 1 else (n-1)*Binomial(n-2, k-1) >;
    [A155865(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
    
  • Mathematica
    p[x_, n_] = If[n==0, 1, 1 + x^n + x*D[(x+1)^(n-1), {x, 1}]];
    Flatten[Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]]
    (* or *)
    q = 1;
    c[n_, q_]= If[n<2, 1, Product[(i-1)^q, {i, 2, n}]];
    T[n_, m_, q_]= c[n, q]/(c[m, q]*c[n-m, q]);
    Flatten[Table[T[n, m, q], {n,0,12}, {m, 0, n}]] (* Roger L. Bagula, Mar 09 2010 *)
  • Maxima
    T(n, k) := if k = 0 or k = n then 1 else (n-1)*binomial(n-2, k-1)$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 05 2018 */
    
  • Sage
    def A155865(n,k): return 1 if (k==0 or k==n) else (n-1)*binomial(n-2, k-1)
    flatten([[A155865(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021

Formula

T(n, k) = coefficients of (p(n, x)), where p(n, x) = 1 + x^n + x*((d/dx) (x+1)^n) and T(0, 0) = 1.
Define c(n) = Product_{i=2..n} (i - 1), with c(0) = c(1) = 1. Then T(n,m) = c(n)/(c(m)*c(n-m)). - Roger L. Bagula, Mar 09 2010
The triangle is the ConvOffsStoT transform of the natural numbers prefaced with a 1. A row with n integers is the ConvOffs transform of a finite series of the first (n-1) terms in (1, 1, 2, 3, 4, ...). See A214281 for definitions of the transform. - Gary W. Adamson, Jul 09 2012
Sum_{k=0..n} T(n, k) = 2 + A001787(n-1) - (3/4)*[n==0]. - R. J. Mathar, Jul 17 2012
From Franck Maminirina Ramaharo, Dec 05 2018: (Start)
T(n, k) = (n-1)*binomial(n-2, k-1) with T(n, 0) = T(n, n) = 1.
n-th row polynomial is (1/2)*(1 + (-1)^(2^n) + 2*x^n + (1 + (-1)^(2^n))*(n - 1)*x*(x + 1)^(n - 2)).
G.f.: 1/(1 - y) + 1/(1 - x*y) + x*y^2/(1 - (1 + x)*y)^2 - 1.
E.g.f.: exp(y) + exp(x*y) + x*(1 - (1 - (1 + x)*y)*exp((1 + x)*y))/(1 + x)^2 - 1. (End)
T(2*n, n) = A002457(n). - Alois P. Heinz, Dec 05 2018

Extensions

Edited and name clarified by Franck Maminirina Ramaharo, Dec 04 2018