cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A155941 Numbers n such that 16*n+1 is not prime.

Original entry on oeis.org

0, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 23, 24, 26, 29, 30, 31, 32, 33, 34, 35, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95
Offset: 1

Views

Author

Vincenzo Librandi, Jan 31 2009

Keywords

Examples

			Distribution of a(n)>0 in the following triangular array:
*;
*,*;
*,*,3;
*,*,*,5;
2,*,*,*,*;
*,4,*,*,*,*;
*,*,*,*,*,*,14;
*,*,*,*,*,*,*,18;
*,*,*,*,13,*,*,*,*;
*,*,*,*,*,17,*,*,*,*;
*,*,10,*,*,*,*,*,*,*,33;
*,*,*,14,*,*,*,*,*,*,*,39;
5,*,*,*,*,*,*,*,32,*,*,*,*; etc.
where * marks the non-integer values of (2*h*k + k + h)/8 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100] |not IsPrime(16*n+1)]; // Vincenzo Librandi, Oct 15 2012
  • Mathematica
    Select[Range[0, 100], !PrimeQ[16 # + 1] &] (* Vincenzo Librandi, Oct 15 2012 *)

Extensions

0 added by Arkadiusz Wesolowski, Aug 03 2011

A155942 Numbers n such that 16n+1 is a prime.

Original entry on oeis.org

1, 6, 7, 12, 15, 16, 21, 22, 25, 27, 28, 36, 37, 40, 42, 48, 55, 58, 61, 63, 72, 75, 76, 78, 81, 85, 88, 93, 97, 100, 106, 111, 117, 118, 126, 130, 132, 133, 135, 142, 151, 162, 163, 166, 168, 172, 175, 177, 181, 190, 193, 195, 196, 198, 201, 207, 208, 210, 216, 226
Offset: 1

Views

Author

Vincenzo Librandi, Jan 31 2009

Keywords

Crossrefs

Programs

A228857 Odd primes p > 3 for which 14*p+1 is also prime.

Original entry on oeis.org

5, 17, 47, 53, 59, 83, 107, 113, 149, 167, 173, 239, 269, 353, 419, 443, 449, 503, 509, 563, 587, 599, 647, 659, 677, 719, 797, 827, 929, 947, 977, 983, 1097, 1103, 1109, 1187, 1193, 1223, 1229, 1259, 1289, 1367, 1409, 1427, 1433, 1439, 1493, 1523, 1667
Offset: 1

Views

Author

Ant King, Sep 06 2013

Keywords

Comments

In 1823, Legendre proved that the first case of Fermat’s Last Theorem is true for all exponents that are members of this sequence (see Ribenboim’s reference, p.112).

Examples

			As both 5 and 14*5 + 1 = 71 are prime, then 5 is a member of this sequence.
		

References

  • Paulo Ribenboim; Fermat’s Last Theorem For Amateurs, Springer-Verlag, New York, Inc., (1999).

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(5,2000) |IsPrime(14*p+1)]; // Vincenzo Librandi, Sep 18 2016
    
  • Mathematica
    Select[Prime[Range[3,1667]],PrimeQ[14#+1] &]
  • PARI
    lista(nn) = forprime(p=5, nn, if(isprime(14*p+1), print1(p, ", "))); \\ Altug Alkan, Sep 18 2016

A106064 Primes p such that 1*p + 16 and 16*p + 1 are primes.

Original entry on oeis.org

7, 37, 97, 151, 163, 181, 331, 337, 487, 547, 571, 643, 727, 757, 967, 1033, 1087, 1093, 1303, 1423, 1471, 1567, 1831, 1987, 2083, 2113, 2221, 2251, 2281, 2671, 2683, 3121, 3187, 3607, 3847, 3931, 4111, 4201, 4447, 4663, 4993, 5023, 5791, 6073, 6343, 6553
Offset: 1

Views

Author

Zak Seidov, May 07 2005

Keywords

Crossrefs

Intersection of A049488 and A155943. - Michel Marcus, Jan 20 2018

Programs

  • Magma
    [p: p in PrimesUpTo(10000)| IsPrime(p+16) and IsPrime(16*p+1)]; // Vincenzo Librandi, Nov 13 2010
  • Mathematica
    Select[Prime[Range[220]], PrimeQ[16#+1]&&PrimeQ[1#+16]&]
Showing 1-4 of 4 results.