A155977 a(n) = n^5 + n^3.
0, 2, 40, 270, 1088, 3250, 7992, 17150, 33280, 59778, 101000, 162382, 250560, 373490, 540568, 762750, 1052672, 1424770, 1895400, 2482958, 3208000, 4093362, 5164280, 6448510, 7976448, 9781250, 11898952, 14368590, 17232320, 20535538
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
GAP
List([0..30], n-> n^5 + n^3); # G. C. Greubel, Sep 02 2019
-
Magma
[n^5 + n^3: n in [0..30]] // Vincenzo Librandi, Feb 03 2012
-
Maple
seq(n^5 + n^3, n=0..30); # G. C. Greubel, Sep 02 2019
-
Mathematica
Table[n^5 + n^3, {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *) CoefficientList[Series[2x(1+14x+30x^2+14x^3+x^4)/(1-x)^6, {x,0,30}], x] (* Vincenzo Librandi, Feb 05 2013 *) LinearRecurrence[{6,-15,20,-15,6,-1}, {0,2,40,270,1088,3250}, 30] (* Harvey P. Dale, Jan 18 2015 *)
-
PARI
a(n)=n^5+n^3 \\ Charles R Greathouse IV, Dec 28 2011
-
Sage
[n^5 + n^3 for n in (0..30)] # G. C. Greubel, Sep 02 2019
Formula
a(n) = 2*A168178(n).
G.f.: 2*x*(1 + 14*x + 30*x^2 + 14*x^3 + x^4)/(1-x)^6. - Vincenzo Librandi, Feb 05 2013
E.g.f.: x*(2 + 18*x + 26*x^2 + 10*x^3 + x^4)*exp(x). - G. C. Greubel, Sep 02 2019
Comments