A156071
Concatenation chain arising in A156069.
Original entry on oeis.org
3, 38, 381, 3816, 38165, 381654, 3816547, 38165472, 381654729
Offset: 1
- Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.
A305714
Number of finite sequences of positive integers of length n that are polydivisible and strictly pandigital.
Original entry on oeis.org
1, 1, 1, 2, 0, 0, 2, 0, 1, 1, 1
Offset: 0
Sequence of sets of n-digit numbers that are weakly polydivisible and strictly pandigital is (with A = 10):
{0}
{1}
{12}
{123,321}
{}
{}
{123654,321654}
{}
{38165472}
{381654729}
{381654729A}
Cf.
A000670,
A010784,
A030299,
A050289,
A143671,
A144688,
A156069,
A156071,
A158242,
A163574,
A240763,
A305701,
A305712,
A305715.
A305712
Polydivisible nonnegative integers whose decimal digits span an initial interval of {0,...,9}.
Original entry on oeis.org
0, 10, 102, 120, 201, 1020, 1200, 2012, 10200, 12000, 12320, 20120, 32120, 102000, 120000, 123204, 321204, 1024023, 1200003, 1232042, 1444023, 2220001, 3212041, 10240232, 12000032, 12320424, 14440232, 32125240, 50165432
Offset: 0
- Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.
-
polyQ[q_]:=And@@Table[Divisible[FromDigits[Take[q,k]],k],{k,Length[q]}];
normseqs[n_]:=Join@@Permutations/@Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Sort[FromDigits/@Join@@Table[Select[normseqs[n]-1,First[#]>0&&polyQ[#]&],{n,8}]]
A305715
Irregular triangle whose rows are all finite sequences of positive integers that are polydivisible and strictly pandigital.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 3, 2, 1, 1, 2, 3, 6, 5, 4, 3, 2, 1, 6, 5, 4, 3, 8, 1, 6, 5, 4, 7, 2, 3, 8, 1, 6, 5, 4, 7, 2, 9, 3, 8, 1, 6, 5, 4, 7, 2, 9, 10
Offset: 1
Triangle is:
{1}
{1,2}
{1,2,3}
{3,2,1}
{1,2,3,6,5,4}
{3,2,1,6,5,4}
{3,8,1,6,5,4,7,2}
{3,8,1,6,5,4,7,2,9}
{3,8,1,6,5,4,7,2,9,10}
- Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.
Cf.
A000670,
A010784,
A030299,
A050289,
A143671,
A144688,
A156069,
A156071,
A158242,
A163574,
A240763,
A305701,
A305712,
A305714 (row lengths).
-
polyQ[q_]:=And@@Table[Divisible[FromDigits[Take[q,k]],k],{k,Length[q]}];
Flatten[Table[Select[Permutations[Range[n]],polyQ],{n,8}]]
Showing 1-4 of 4 results.
Comments