cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A156085 One fourth of the sum of the squares of the first n Fibonacci numbers with index divisible by 3.

Original entry on oeis.org

0, 1, 17, 306, 5490, 98515, 1767779, 31721508, 569219364, 10214227045, 183286867445, 3288949386966, 59017802097942, 1059031488375991, 19003548988669895, 341004850307682120, 6119083756549608264, 109802502767585266633, 1970325966059985191129
Offset: 0

Views

Author

Stuart Clary, Feb 04 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., -5490, -306, -17, -1, 0, [0], 1, 17, 306, 5490, 98515, ... This is (-A156085)-reversed followed by A156085. That is, A156085(-n) = -A156085(n-1).

Crossrefs

Programs

  • Mathematica
    a[n_Integer] := If[ n >= 0, Sum[ (1/4) Fibonacci[3k]^2, {k, 1, n} ], -Sum[ (1/4) Fibonacci[-3k]^2, {k, 1, -n - 1} ] ]
    Accumulate[Fibonacci[3*Range[0,20]]^2]/4 (* or *) LinearRecurrence[{17,17,-1},{0,1,17},30] (* Harvey P. Dale, Aug 17 2014 *)
  • PARI
    concat(0, Vec(x/((1+x)*(1-18*x+x^2)) + O(x^25))) \\ Colin Barker, Mar 04 2016
    
  • PARI
    a(n) = sum(k=1, n, fibonacci(3*k)^2)/4; \\ Michel Marcus, Mar 04 2016

Formula

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
a(n) = (1/4) sum_{k=1..n} F(3k)^2.
Closed form: a(n) = L(6n+3)/80 - (-1)^n/20.
Factored closed form: a(n) = (1/16) F(n) F(n+1) (L(n) - 1)(L(n) + 1)(L(2n+2) - 1) if n is even; a(n) = (1/16) F(n) F(n+1) (L(n+1) - 1)(L(n+1) + 1)(L(2n) - 1) if n is odd.
Recurrence: a(n) - 17 a(n-1) - 17 a(n-2) + a(n-3) = 0.
G.f.: A(x) = x/(1 - 17 x - 17 x^2 + x^3) = x/((1 + x)(1 - 18 x + x^2)).
a(n) = ((9+4*sqrt(5))^(-n)*(2-sqrt(5)-4*(-9-4*sqrt(5))^n+(2+sqrt(5))*(9+4*sqrt(5))^(2*n)))/80. - Colin Barker, Mar 04 2016

A156084 Sum of the squares of the first n Fibonacci numbers with index divisible by 3.

Original entry on oeis.org

0, 4, 68, 1224, 21960, 394060, 7071116, 126886032, 2276877456, 40856908180, 733147469780, 13155797547864, 236071208391768, 4236125953503964, 76014195954679580, 1364019401230728480, 24476335026198433056, 439210011070341066532
Offset: 0

Views

Author

Stuart Clary, Feb 04 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., -21960, -1224, -68, -4, 0, [0], 4, 68, 1224, 21960, 394060, ... This is (-A156084)-reversed followed by A156084. That is, A156084(-n) = -A156084(n-1).

Crossrefs

Partial sums of A014729.

Programs

  • Mathematica
    a[n_Integer] := If[ n >= 0, Sum[ Fibonacci[3k]^2, {k, 1, n} ], -Sum[ Fibonacci[-3k]^2, {k, 1, -n - 1} ] ]

Formula

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
a(n) = sum_{k=1..n} F(3k)^2.
Closed form: a(n) = L(6n+3)/20 - (-1)^n/5.
Factored closed form: a(n) = (1/4) F(n) F(n+1) (L(n) - 1)(L(n) + 1)(L(2n+2) - 1) if n is even; a(n) = (1/4) F(n) F(n+1) (L(n+1) - 1)(L(n+1) + 1)(L(2n) - 1) if n is odd.
Recurrence: a(n) - 17 a(n-1) - 17 a(n-2) + a(n-3) = 0.
G.f.: A(x) = 4 x/(1 - 17 x - 17 x^2 + x^3) = 4 x/((1 + x)(1 - 18 x + x^2)).
a(n) = 4*A156085(n). - R. J. Mathar, Aug 06 2019

A156090 Alternating sum of the squares of the first n Fibonacci numbers with index divisible by 3.

Original entry on oeis.org

0, -4, 60, -1096, 19640, -352460, 6324596, -113490320, 2036501104, -36543529620, 655747031980, -11766903046104, 211148507797800, -3788906237314396, 67989163763861220, -1220016041512187680, 21892299583455516896, -392841376460687116580
Offset: 0

Views

Author

Stuart Clary, Feb 04 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., -19640, 1096, -60, 4, 0, [0], -4, 60, -1096, 19640, -352460, ... This is (-a(n))-reversed followed by a(n). That is, a(-n) = -a(n-1).

Crossrefs

Programs

  • GAP
    a:=[0,-4,60,-1096];; for n in [5..20] do a[n]:=-16*a[n-1]+34*a[n-2]-16*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
    
  • Magma
    [(-1)^n*Fibonacci(6*n+3)/10 - (2*n + 1)/5: n in [0..20]]; // Vincenzo Librandi, Sep 12 2018
    
  • Maple
    with(combinat,fibonacci): a:=n->add((-1)^k*fibonacci(3*k)^2,k=1..n): seq(a(n), n=0..20); # Muniru A Asiru, Sep 12 2018
  • Mathematica
    a[n_]:= If[n >= 0, Sum[(-1)^k Fibonacci[3 k]^2, {k, 1, n}], Sum[-(-1)^k Fibonacci[-3 k]^2, {k, 1, -n-1}]];
    LinearRecurrence[{-16,34,-16,-1}, {0,-4,60,-1096}, 30] (* Harvey P. Dale, Oct 24 2016 *)
  • SageMath
    def A156090(n): return ((-1)^n*fibonacci(6*n+3) -2*(2*n+1))//10 # G. C. Greubel, Jun 12 2025

Formula

Let F(n) be the n-th Fibonacci number, A000045(n), then: (Start)
a(n) = Sum_{k=1..n} (-1)^k*F(3*k)^2.
Closed form: a(n) = (-1)^n*F(6*n+3)/10 - (2*n + 1)/5.
Recurrence: a(n) + 17*a(n-1) - 17*a(n-2) - a(n-3) = -8.
Recurrence: a(n) + 16*a(n-1) - 34*a(n-2) + 16*a(n-3) + a(n-4) = 0.
G.f.: -4*x*(1 + x)/(1 + 16*x - 34*x^2 + 16*x^3 + x^4) = -4*x(1 + x)/((1 - x)^2*(1 + 18*x + x^2)). (End)
Limit_{n -> oo} a(n)/a(n-1) = -(9 + sqrt(80)). - A.H.M. Smeets, Sep 11 2018
E.g.f.: (-1/(5*sqrt(5)))*( exp(-9*x)*(2*sinh(p*x) - sqrt(5)*cosh(p*x)) + sqrt(5)*(1 + 2*x)*exp(x) ), where p = 4*sqrt(5). - G. C. Greubel, Jun 12 2025
Showing 1-3 of 3 results.