cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A186086 Beastly primes (version 1): either 666 followed by 0's and a 1 or 7 at the right end or a palindrome with 666 in the center, 0's surrounding these digits, and 1 or 7 at both ends.

Original entry on oeis.org

6661, 16661, 66601, 76667, 700666007, 6660000000001, 666000000000001, 700000666000007, 70000006660000007, 6660000000000000000000000007, 66600000000000000000000000007, 1000000000000066600000000000001
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 12 2011

Keywords

Comments

Differs from A131645 in that 26669, 46663, 56663, 66617, 66629, 66643, 66653, 66683, 66697, 96661, 96667, 106661, 106663, 106669, 116663, 146669, 166601, 166603, 166609, 166613, 166619, 166627, 166631, 166643, 166657, 166667, 166669, 166679, are not included here.
76667 is the largest beastly prime that does not contain the digit "0".

Crossrefs

Programs

  • Mathematica
    e = 14; p = 666*10^n + 1; q = (10^(n + 2) + 666)*10^n + 1; Select[Union[Table[p, {n, 2*e}], Table[p + 6, {n, 2*e}], Table[q, {n, e}], Table[q + 6*10^(2*n + 2) + 6, {n, e}]], PrimeQ] (* Arkadiusz Wesolowski, Sep 21 2011 *)
    Module[{nn=35,bp1,bp2,bp3,bp4}, bp1=FromDigits/@ Table[Join[PadRight[ {6,6,6},n1,0],{1}],{n1,3,nn}]; bp2=FromDigits/@ Table[Join[ PadRight[ {6,6,6},n2,0],{7}], {n2,3,nn}]; bp3=FromDigits/@ Table[Join[PadRight[ {1},n3,0], {6,6,6},PadLeft[ {1},n3,0]],{n3,1,nn/2}];bp4=FromDigits/@ Table[Join[PadRight[{7},n3,0],{6,6,6}, PadLeft[ {7},n3,0]],{n3,1,nn/2}]; Select[Sort[Join[bp1,bp2,bp3,bp4]],PrimeQ]] (* Harvey P. Dale, Jan 18 2017 *)

Extensions

Edited by N. J. A. Sloane, Feb 12 2011
a(10)-a(12) from Charles R Greathouse IV, Feb 12 2011

A232448 Indices of Belphegor primes: numbers k such that the decimal number 1 0...0(k 0's) 666 0...0(k 0's) 1 (i.e., A232449(k)) is prime.

Original entry on oeis.org

0, 13, 42, 506, 608, 2472, 2623, 28291, 181298
Offset: 1

Views

Author

Stanislav Sykora, Nov 24 2013

Keywords

Comments

The resulting primes might be called Belphegor primes, after Pickover (see link). - N. J. A. Sloane, Dec 14 2015
I suspect the larger numbers only correspond to probable primes. - N. J. A. Sloane, Oct 16 2018
The numbers correspond to proven primes for n <= 9. - Jens Kruse Andersen, Mar 25 2021

Examples

			0 is in the sequence because A232449(0) = 16661 is prime.
13 is in the sequence because A232449(13) = 1000000000000066600000000000001 is prime.
For k = 1..12, A232449(k) is composite.
42 is in the sequence because 10000000000000000000000000000000000000000006660000000000000000000000000000\
000000000000001 is a (probable) prime. - _N. J. A. Sloane_, Oct 16 2018
		

Crossrefs

Cf. A232449 (Belphegor numbers), A232450, A232451.
Cf. A156166 (= a(n) + 1).

Programs

  • Mathematica
    lst = {}; Do[p = 10^(2*n + 4) + 666*10^(n + 1) + 1; If[PrimeQ[p], Print[n]], {n, 0, 3000}]; (* Nathaniel Johnston, Nov 25 2013 *)
  • PARI
    default(factor_proven,1);
    Belphegor(k)=(10^(k+3)+666)*10^(k+1)+1;
    for (an=0,10000,
      if (isprime(Belphegor(an)),print("Found: ",an),
          if (an%100==0,print("Tested up to: ",an)))
    );

Formula

a(n) = A156166(n) - 1.

Extensions

a(9) based on A156166 from Eric W. Weisstein, Jan 24 2017
Offset changed to 1 by Jon E. Schoenfield, Mar 23 2021

A246804 Numbers k such that (10^(k+2) + 999) * 10^k + 1 is prime.

Original entry on oeis.org

1, 3, 15, 135, 645, 1373, 195317, 237249
Offset: 1

Views

Author

Serge Batalov, Nov 16 2014

Keywords

Comments

Or, indices of primes in the sequence of decimal palindromes 19991, 1099901, 100999001, 10009990001, ...
Or, numbers k such that there exists an "upside-down-Belphegor's primes" of length 2*k+3.

Crossrefs

Cf. A156166 (Belphegor's primes), A082703 (plateau primes 199...991).

Programs

  • Magma
    [n: n in [1..500] | IsPrime((10^(n+2)+999)*10^n+1)];
  • Maple
    A246804:=n->`if`(isprime((10^(n+2)+999)*10^n+1), n, NULL): seq(A246804(n), n=1..10^3); # Wesley Ivan Hurt, Nov 16 2014
  • Mathematica
    Select[Range[10^3], PrimeQ[(10^(# + 2) + 999)*10^# + 1] &]
  • PARI
    for( n=1,9999, ispseudoprime((10^(n+2)+999)*10^n+1) & print1(n","))
    
Showing 1-3 of 3 results.