A272875 Decimal expansion of the real part of the infinite nested power (1+(1+(1+...)^i)^i)^i, with i being the imaginary unit.
6, 7, 3, 8, 8, 1, 3, 3, 1, 1, 0, 7, 8, 7, 5, 5, 1, 5, 7, 8, 0, 2, 3, 1, 1, 9, 0, 4, 6, 8, 1, 0, 1, 9, 3, 3, 8, 7, 6, 4, 5, 0, 3, 3, 4, 7, 9, 3, 3, 7, 2, 5, 4, 5, 4, 8, 9, 9, 8, 1, 3, 5, 1, 6, 6, 9, 3, 1, 2, 1, 3, 0, 3, 2, 7, 5, 2, 9, 3, 8, 0, 7, 5, 0, 8, 5, 0, 7, 6, 3, 1, 1, 7, 3, 1, 7, 9, 4, 1, 6, 3, 6, 1, 0, 1
Offset: 0
Examples
0.6738813311078755157802311904681019338764503347933725454899813516...
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
Programs
-
Mathematica
RealDigits[Re[z /. FindRoot[(1 + z)^I == z, {z, 0}, WorkingPrecision -> 120]]][[1]] (* Amiram Eldar, May 26 2023 *)
-
PARI
\\ f(x) computes (x+(x+...)^i)^i, provided that it converges: f(x)={my(z=1.0,zlast=0.0,eps=10.0^(1-default(realprecision)));while(abs(z-zlast)>eps,zlast=z;z=(x+z)^I);return(z)} \\ To compute this constant, use: z0 = f(1); real(z0)
Formula
z0 = a+A272876*i satisfies the equations (1+z0)^i = z0, (1+z0)*z0^i = 1.
Comments