cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376580 G.f.: Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^(2*j-1))^2.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 2, 4, 3, 3, 3, 3, 4, 4, 5, 5, 7, 9, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 18, 17, 19, 24, 23, 25, 27, 28, 31, 32, 33, 37, 40, 42, 44, 47, 52, 54, 59, 62, 67, 75, 75, 80, 87, 90, 95, 102, 109, 114, 119, 127, 134, 142, 150, 159, 171, 178, 187, 199, 211
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Sum[x^(k^2)*Product[1+x^(2*j-1), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * A376621^sqrt(n) / sqrt(n), where c = 1/(2*sqrt(3 - 4*sinh(arcsinh(3^(3/2)/2) / 3) / sqrt(3))) = 0.390989767113799449629...
a(n) ~ c * A376542(n), where c = (108 + 12*sqrt(93))^(1/3)/3 - 4/(108 + 12*sqrt(93))^(1/3) = 1.364655607... is the real root of the equation c*(4 + c^2) = 8.
a(n) ~ c * A369557(n), where c = A347178 = -sinh(log((-3*sqrt(3) + sqrt(31))/2)/3) / sqrt(3) = 0.3411639019... is the real root of the equation 2*c*(1 + 4*c^2) = 1.
a(n) ~ A376631(n) * (A376621/A376660)^sqrt(n).

A347177 Decimal expansion of real part of (i + (i + (i + (i + ...)^(1/3))^(1/3))^(1/3))^(1/3), where i is the imaginary unit.

Original entry on oeis.org

1, 1, 6, 1, 5, 4, 1, 3, 9, 9, 9, 9, 7, 2, 5, 1, 9, 3, 6, 0, 8, 7, 9, 1, 7, 6, 8, 7, 2, 4, 7, 1, 7, 4, 0, 7, 4, 8, 4, 3, 1, 4, 7, 2, 5, 8, 0, 2, 1, 5, 1, 4, 2, 9, 0, 6, 3, 6, 1, 6, 6, 2, 1, 4, 1, 3, 8, 4, 9, 7, 1, 6, 8, 8, 9, 5, 7, 7, 8, 4, 6, 8, 9, 7, 9, 4, 7, 6, 7, 2, 2, 2, 3, 9, 6, 0, 7, 3, 0, 8, 8, 9, 9, 1, 5, 0, 8, 7, 0, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Comments

This is the sum of the imaginary parts of the complex roots of the cubic equation 8*r^3 + 2*r - 1 = 0 , and its real solution is A347178. - Gerry Martens, Apr 02 2024

Examples

			1.1615413999972519360879176872471740748431...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/12) 2^(2/3) 3^(5/6) ((Sqrt[93] - 9)^(1/3) + (9 + Sqrt[93])^(1/3)), 10, 110][[1]]
  • PARI
    (1/12)*2^(2/3)*3^(5/6)*((sqrt(93) - 9)^(1/3) + (9 + sqrt(93))^(1/3)) \\ Michel Marcus, Aug 21 2021
    
  • PARI
    2*imag(polroots(8*x^3 + 2*x - 1)[3]) \\ Gerry Martens, Apr 02 2024

Formula

Equals cosh(asinh(3*sqrt(3)/2)/3). - Gerry Martens, Apr 02 2024

A355141 a(0)=1, a(1)=a(2)=0; for n > 2, a(n) = a(n-1) + s if n is odd, a(n-1) - s if n is even, where s = a(n-1) + a(n-2) + a(n-3).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, -1, -1, 0, -2, 1, 0, 1, 3, -1, 2, -2, -3, 0, -5, 3, 1, 2, 8, -3, 4, -5, -9, 1, -12, 8, 5, 4, 21, -9, 7, -12, -26, 5, -28, 21, 19, 7, 54, -26, 9, -28, -73, 19, -63, 54, 64, 9, 136, -73, -1, -63, -200, 64, -135, 136, 201, -1, 335, -200, -66
Offset: 0

Views

Author

Nate Shaw, Jun 20 2022

Keywords

Comments

Apparently, |a(n)|^(1/n) < 1.100276355... = (A347177^2 + A347178^2)^(1/4). - Jon E. Schoenfield, Jun 22 2022

Examples

			For n = 12, a(12) = 1: The previous three terms are a(9) = -2, a(10) = 1, a(11) = 0, whose sum is -1. 12 is even, so we subtract that sum from the previous term, a(11) = 0, which gives a(12) = 0 - (-1) = 1.
		

Programs

  • Mathematica
    CoefficientList[Series[(1 + x^3 + x^4 + x^5)/(1 + x^4 + x^6), {x, 0, 65}], x] (* Michael De Vlieger, Jun 22 2022 *)
    LinearRecurrence[{0,0,0,-1,0,-1},{1,0,0,1,0,1},70] (* Harvey P. Dale, Aug 11 2025 *)
  • Python
    def a(n):
        if n in [0, 1, 2]:
            return [1, 0, 0][n]
        else:
            previous_terms = [1, 0, 0]
            for i in range(n - 2):
                previous_three_terms = previous_terms[-3:]
                previous_three_terms_sum = sum(previous_three_terms)
                current_term = previous_terms[-1]
                if i % 2 == 0:
                    previous_terms.append(current_term + previous_three_terms_sum)
                else:
                    previous_terms.append(current_term - previous_three_terms_sum)
            return previous_terms[-1]
    print([a(n) for n in range(66)])
    
  • Python
    a, terms = [1, 0,  0], 66
    [a.append(a[-1]-(-1)**(n%2)*sum(a[-3:])) for n in range(3, terms)]
    print(a) # Michael S. Branicky, Jun 22 2022

Formula

a(n) = a(n-1) + (2*(n mod 2) - 1)*(a(n-3) + a(n-2) + a(n-1)), with a(0) = 1, a(1) = 0, and a(2) = 0.
G.f.: (1 + x^3 + x^4 + x^5)/(1 + x^4 + x^6). - Stefano Spezia, Jun 22 2022
Showing 1-3 of 3 results.