cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347178 Decimal expansion of imaginary part of (i + (i + (i + (i + ...)^(1/3))^(1/3))^(1/3))^(1/3), where i is the imaginary unit.

Original entry on oeis.org

3, 4, 1, 1, 6, 3, 9, 0, 1, 9, 1, 4, 0, 0, 9, 6, 6, 3, 6, 8, 4, 7, 4, 1, 8, 6, 9, 8, 5, 5, 5, 2, 4, 1, 2, 8, 4, 4, 5, 5, 9, 4, 2, 9, 0, 9, 4, 8, 9, 9, 9, 2, 8, 8, 9, 0, 1, 8, 6, 4, 3, 0, 3, 3, 1, 9, 9, 4, 8, 3, 3, 9, 3, 4, 3, 4, 9, 9, 0, 1, 0, 5, 4, 0, 8, 6, 6, 0, 2, 1, 8, 9, 3, 1, 0, 2, 5, 6, 4, 1, 4, 7, 7, 9, 6, 6, 5, 9, 3, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Examples

			0.3411639019140096636847418698555241284...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[((29 + 3 Sqrt[93])^(1/3) - 2^(1/3))/(2 (3 (9 + Sqrt[93]))^(1/3)), 10, 110][[1]]
  • PARI
    ((29 + 3*sqrt(93))^(1/3) - 2^(1/3))/(2*(3*(9 + sqrt(93)))^(1/3)) \\ Michel Marcus, Aug 21 2021

Formula

Equals -sinh(log((-3*sqrt(3) + sqrt(31))/2)/3)/sqrt(3). - Vaclav Kotesovec, Sep 29 2024

A355141 a(0)=1, a(1)=a(2)=0; for n > 2, a(n) = a(n-1) + s if n is odd, a(n-1) - s if n is even, where s = a(n-1) + a(n-2) + a(n-3).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, -1, -1, 0, -2, 1, 0, 1, 3, -1, 2, -2, -3, 0, -5, 3, 1, 2, 8, -3, 4, -5, -9, 1, -12, 8, 5, 4, 21, -9, 7, -12, -26, 5, -28, 21, 19, 7, 54, -26, 9, -28, -73, 19, -63, 54, 64, 9, 136, -73, -1, -63, -200, 64, -135, 136, 201, -1, 335, -200, -66
Offset: 0

Views

Author

Nate Shaw, Jun 20 2022

Keywords

Comments

Apparently, |a(n)|^(1/n) < 1.100276355... = (A347177^2 + A347178^2)^(1/4). - Jon E. Schoenfield, Jun 22 2022

Examples

			For n = 12, a(12) = 1: The previous three terms are a(9) = -2, a(10) = 1, a(11) = 0, whose sum is -1. 12 is even, so we subtract that sum from the previous term, a(11) = 0, which gives a(12) = 0 - (-1) = 1.
		

Programs

  • Mathematica
    CoefficientList[Series[(1 + x^3 + x^4 + x^5)/(1 + x^4 + x^6), {x, 0, 65}], x] (* Michael De Vlieger, Jun 22 2022 *)
    LinearRecurrence[{0,0,0,-1,0,-1},{1,0,0,1,0,1},70] (* Harvey P. Dale, Aug 11 2025 *)
  • Python
    def a(n):
        if n in [0, 1, 2]:
            return [1, 0, 0][n]
        else:
            previous_terms = [1, 0, 0]
            for i in range(n - 2):
                previous_three_terms = previous_terms[-3:]
                previous_three_terms_sum = sum(previous_three_terms)
                current_term = previous_terms[-1]
                if i % 2 == 0:
                    previous_terms.append(current_term + previous_three_terms_sum)
                else:
                    previous_terms.append(current_term - previous_three_terms_sum)
            return previous_terms[-1]
    print([a(n) for n in range(66)])
    
  • Python
    a, terms = [1, 0,  0], 66
    [a.append(a[-1]-(-1)**(n%2)*sum(a[-3:])) for n in range(3, terms)]
    print(a) # Michael S. Branicky, Jun 22 2022

Formula

a(n) = a(n-1) + (2*(n mod 2) - 1)*(a(n-3) + a(n-2) + a(n-1)), with a(0) = 1, a(1) = 0, and a(2) = 0.
G.f.: (1 + x^3 + x^4 + x^5)/(1 + x^4 + x^6). - Stefano Spezia, Jun 22 2022
Showing 1-2 of 2 results.