cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A156548 Decimal expansion of the real part of the limit of f(f(...f(0)...)) where f(z)=sqrt(i+z).

Original entry on oeis.org

1, 3, 0, 0, 2, 4, 2, 5, 9, 0, 2, 2, 0, 1, 2, 0, 4, 1, 9, 1, 5, 8, 9, 0, 9, 8, 2, 0, 7, 4, 9, 5, 2, 1, 3, 8, 8, 5, 4, 8, 5, 3, 2, 8, 1, 9, 1, 8, 3, 9, 4, 7, 6, 1, 0, 1, 0, 4, 8, 3, 6, 1, 4, 0, 7, 5, 2, 8, 1, 2, 8, 0, 3, 4, 9, 9, 1, 3, 6, 3, 8, 1, 5, 0, 8, 9, 1, 0, 2, 8, 3, 4, 1, 3, 4, 2, 1, 9, 4, 6, 6, 4, 8, 2, 9
Offset: 1

Views

Author

Clark Kimberling, Feb 12 2009

Keywords

Comments

The imaginary part, 0.624810..., is given by A156590.
(a-1) is the limit of the real part of the same expression, but with f(z)=i/(1+z), and therefore the real part of the continued fraction i/(1+i/(1+i/(...))). Moreover, (a-1) equals also the imaginary part of the continued fraction i/(i+i/(i+i/(...))). - Stanislav Sykora, May 27 2015

Examples

			1.30024259022012041915890982074952138854853281918394761...
		

Crossrefs

Cf. A156590.

Programs

  • Mathematica
    RealDigits[1/2 + Sqrt[(1+Sqrt[17])/8],10,120][[1]] (* Vaclav Kotesovec, May 28 2015 *)

Formula

Define z(1)=f(0)=sqrt(i), where i=sqrt(-1), and z(n)=f(z(n-1)) for n>1.
Write the limit of z(n) as a+bi where a and b are real. Then a=(b+1)/(2b), where b=sqrt((sqrt(17)-1)/8).
Equals real part of 1/2 + Sum_{n>=0} ((-1)^(n/2 + 5/4)*binomial(2*n, n))/(2^(4*n)*(2*n - 1)). - Antonio GraciĆ” Llorente, Nov 20 2024

A272876 Decimal expansion of the imaginary part of the infinite nested power (1+(1+(1+...)^i)^i)^i, with i being the imaginary unit.

Original entry on oeis.org

4, 0, 7, 5, 6, 3, 9, 3, 0, 5, 4, 5, 6, 2, 1, 8, 4, 4, 7, 3, 9, 6, 6, 3, 2, 4, 3, 3, 9, 4, 1, 5, 2, 0, 8, 8, 6, 4, 0, 6, 2, 7, 9, 9, 2, 8, 6, 6, 7, 7, 5, 1, 0, 3, 0, 4, 8, 7, 4, 8, 3, 5, 6, 7, 7, 0, 4, 0, 2, 1, 5, 5, 3, 9, 4, 8, 2, 2, 1, 5, 4, 2, 1, 4, 9, 1, 3, 9, 2, 7, 4, 8, 9, 9, 2, 3, 5, 0, 4, 0, 4, 8, 5, 8, 0
Offset: 0

Views

Author

Stanislav Sykora, May 15 2016

Keywords

Comments

The real part and the modulus of this complex constant are in A272875 and A272877, respectively. For more information, see A272875.

Examples

			0.40756393054562184473966324339415208864062799286677510304874835...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Im[z /. FindRoot[(1 + z)^I == z, {z, 0}, WorkingPrecision -> 120]]][[1]] (* Amiram Eldar, May 26 2023 *)
  • PARI
    \\ f(x) computes (x+(x+...)^i)^i, provided that it converges:
    f(x)={my(z=1.0,zlast=0.0,eps=10.0^(1-default(realprecision)));while(abs(z-zlast)>eps,zlast=z;z=(x+z)^I);return(z)}
    \\ To compute this constant, use:
    z0 = f(1); imag(z0)

A347178 Decimal expansion of imaginary part of (i + (i + (i + (i + ...)^(1/3))^(1/3))^(1/3))^(1/3), where i is the imaginary unit.

Original entry on oeis.org

3, 4, 1, 1, 6, 3, 9, 0, 1, 9, 1, 4, 0, 0, 9, 6, 6, 3, 6, 8, 4, 7, 4, 1, 8, 6, 9, 8, 5, 5, 5, 2, 4, 1, 2, 8, 4, 4, 5, 5, 9, 4, 2, 9, 0, 9, 4, 8, 9, 9, 9, 2, 8, 8, 9, 0, 1, 8, 6, 4, 3, 0, 3, 3, 1, 9, 9, 4, 8, 3, 3, 9, 3, 4, 3, 4, 9, 9, 0, 1, 0, 5, 4, 0, 8, 6, 6, 0, 2, 1, 8, 9, 3, 1, 0, 2, 5, 6, 4, 1, 4, 7, 7, 9, 6, 6, 5, 9, 3, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Examples

			0.3411639019140096636847418698555241284...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[((29 + 3 Sqrt[93])^(1/3) - 2^(1/3))/(2 (3 (9 + Sqrt[93]))^(1/3)), 10, 110][[1]]
  • PARI
    ((29 + 3*sqrt(93))^(1/3) - 2^(1/3))/(2*(3*(9 + sqrt(93)))^(1/3)) \\ Michel Marcus, Aug 21 2021

Formula

Equals -sinh(log((-3*sqrt(3) + sqrt(31))/2)/3)/sqrt(3). - Vaclav Kotesovec, Sep 29 2024

A347177 Decimal expansion of real part of (i + (i + (i + (i + ...)^(1/3))^(1/3))^(1/3))^(1/3), where i is the imaginary unit.

Original entry on oeis.org

1, 1, 6, 1, 5, 4, 1, 3, 9, 9, 9, 9, 7, 2, 5, 1, 9, 3, 6, 0, 8, 7, 9, 1, 7, 6, 8, 7, 2, 4, 7, 1, 7, 4, 0, 7, 4, 8, 4, 3, 1, 4, 7, 2, 5, 8, 0, 2, 1, 5, 1, 4, 2, 9, 0, 6, 3, 6, 1, 6, 6, 2, 1, 4, 1, 3, 8, 4, 9, 7, 1, 6, 8, 8, 9, 5, 7, 7, 8, 4, 6, 8, 9, 7, 9, 4, 7, 6, 7, 2, 2, 2, 3, 9, 6, 0, 7, 3, 0, 8, 8, 9, 9, 1, 5, 0, 8, 7, 0, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Comments

This is the sum of the imaginary parts of the complex roots of the cubic equation 8*r^3 + 2*r - 1 = 0 , and its real solution is A347178. - Gerry Martens, Apr 02 2024

Examples

			1.1615413999972519360879176872471740748431...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/12) 2^(2/3) 3^(5/6) ((Sqrt[93] - 9)^(1/3) + (9 + Sqrt[93])^(1/3)), 10, 110][[1]]
  • PARI
    (1/12)*2^(2/3)*3^(5/6)*((sqrt(93) - 9)^(1/3) + (9 + sqrt(93))^(1/3)) \\ Michel Marcus, Aug 21 2021
    
  • PARI
    2*imag(polroots(8*x^3 + 2*x - 1)[3]) \\ Gerry Martens, Apr 02 2024

Formula

Equals cosh(asinh(3*sqrt(3)/2)/3). - Gerry Martens, Apr 02 2024

A257945 Decimal expansion of abs(i/(i + i/(i + i/...))) and abs(i/(1 + i/(1 + i/...))), i being the imaginary unit.

Original entry on oeis.org

6, 9, 3, 2, 0, 5, 4, 6, 4, 6, 2, 3, 7, 9, 7, 3, 2, 0, 4, 3, 4, 3, 6, 3, 7, 0, 4, 2, 2, 4, 1, 3, 8, 6, 8, 7, 9, 4, 1, 0, 2, 1, 7, 5, 0, 1, 6, 9, 2, 1, 9, 0, 1, 3, 3, 9, 9, 5, 5, 5, 8, 6, 7, 5, 2, 9, 5, 5, 8, 1, 4, 8, 8, 3, 1, 6, 6, 1, 0, 4, 3, 0, 2, 2, 3, 3, 6, 0, 6, 9, 1, 5, 2, 6, 8, 1, 8, 5, 8, 3, 5, 0, 5, 6, 4
Offset: 0

Views

Author

Stanislav Sykora, May 29 2015

Keywords

Comments

Set v = A156590 and u = (A156548 - 1). Then the continued fractions evaluate to i/(i + i/(i + i/...)) = (sqrt(4*i - 1) - i)/2 = v + u*i and i/(1 + i/(1 + i/...)) = (sqrt(4*i + 1) - 1)/2 = u + v*i. They can be evaluated either explicitly or as limits of the convergent recursive mappings z -> i/(i + z) and z -> i/(1 + z), respectively, starting, for example, with z = 0.
An algebraic integer of degree 8. - Charles R Greathouse IV, Jun 02 2015

Examples

			0.69320546462379732043436370422413868794102175016921901339955586752...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[1 + Sqrt[17] - Sqrt[2*(1 + Sqrt[17])]]/2, 10, 105][[1]] (* Vaclav Kotesovec, Jun 02 2015 *)
  • PARI
    sqrt(1+sqrt(17)-sqrt(2*(1+sqrt(17))))/2
    
  • PARI
    polrootsreal(x^8-x^6-2*x^4-x^2+1)[3] \\ Charles R Greathouse IV, Jun 02 2015

Formula

Equals sqrt(1 + sqrt(17) - sqrt(2*(1 + sqrt(17))))/2.
Showing 1-5 of 5 results.