A059455 Safe primes which are also Sophie Germain primes.
5, 11, 23, 83, 179, 359, 719, 1019, 1439, 2039, 2063, 2459, 2819, 2903, 2963, 3023, 3623, 3779, 3803, 3863, 4919, 5399, 5639, 6899, 6983, 7079, 7643, 7823, 10163, 10799, 10883, 11699, 12203, 12263, 12899, 14159, 14303, 14699, 15803, 17939
Offset: 1
Keywords
Examples
83 is a term because it is prime and 2*83+1 = 167 and (83-1)/2 = 41 are both primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Chris K. Caldwell, Cunningham Chains.
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(20000) |IsPrime((p-1) div 2) and IsPrime(2*p+1)]; // Vincenzo Librandi, Oct 31 2014
-
Mathematica
lst={}; Do[p=Prime[n]; If[PrimeQ[(p-1)/2]&&PrimeQ[2*p+1], AppendTo[lst, p]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 02 2008 *) Select[Prime[Range[1000]], AllTrue[{(# - 1)/2, 2 # + 1}, PrimeQ] &] (* requires Mathematica 10+; Feras Awad, Dec 19 2018 *)
-
PARI
forprime(p=2,1e5,if(isprime(p\2)&&isprime(2*p+1),print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
-
Python
from itertools import count, islice from sympy import isprime, prime def A059455_gen(): # generator of terms return filter(lambda p:isprime(p>>1) and isprime(p<<1|1),(prime(i) for i in count(1))) A059455_list = list(islice(A059455_gen(),10)) # Chai Wah Wu, Jul 12 2022
Formula
A156660(a(n))*A156659(a(n)) = 1; A156877 gives numbers of these numbers <= n. - Reinhard Zumkeller, Feb 18 2009
Comments