cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156977 Numbers n such that n^2 contains every decimal digit exactly once.

Original entry on oeis.org

32043, 32286, 33144, 35172, 35337, 35757, 35853, 37176, 37905, 38772, 39147, 39336, 40545, 42744, 43902, 44016, 45567, 45624, 46587, 48852, 49314, 49353, 50706, 53976, 54918, 55446, 55524, 55581, 55626, 56532, 57321, 58413, 58455, 58554, 59403, 60984
Offset: 1

Views

Author

Zak Seidov, Feb 20 2009

Keywords

Comments

There are exactly 87 such numbers, none of them being prime.
Since 0 + 1 +...+ 9 = 5*9, every pandigital number is divisible by 9, hence every term of this sequence is divisible by 3 and so cannot be a prime. - Giovanni Resta, Mar 19 2013 [Comment expanded by N. J. A. Sloane, Jan 15 2022]

Crossrefs

Programs

  • Magma
    [n: n in [Floor(Sqrt(1023456789))..Ceiling(Sqrt(9876543210))] | Set(Intseq(n^2)) eq {0..9}]; // Bruno Berselli, Mar 19 2013 (after Giovanni Resta)
  • Maple
    lim:=floor(sqrt(9876543210)): for n from floor(sqrt(1023456789)) to lim do d:=[op(convert(n^2, base, 10))]: pandig:=true: for k from 0 to 9 do if(numboccur(k, d)<>1)then pandig:=false: break: fi: od: if(pandig)then printf("%d, ",n): fi: od: # Nathaniel Johnston, Jun 22 2011
  • Mathematica
    Select[Range[Floor@Sqrt@1023456789, Ceiling@Sqrt@9876543210], Sort@IntegerDigits[#^2] == Range[0, 9] &] (* Giovanni Resta, Mar 19 2013 *)
    Select[Range[31992,99381,3],Union[DigitCount[#^2]]=={1}&] (* Harvey P. Dale, Jan 17 2022 *)

Formula

a(n) = sqrt(A036745(n)).