A156977 Numbers n such that n^2 contains every decimal digit exactly once.
32043, 32286, 33144, 35172, 35337, 35757, 35853, 37176, 37905, 38772, 39147, 39336, 40545, 42744, 43902, 44016, 45567, 45624, 46587, 48852, 49314, 49353, 50706, 53976, 54918, 55446, 55524, 55581, 55626, 56532, 57321, 58413, 58455, 58554, 59403, 60984
Offset: 1
Links
- Giovanni Resta, Table of n, a(n) for n = 1..87 (full sequence)
- S. C. Gould, Question 15734, The Educational Times, and Journal of the College of Preceptors 58 (1905), nr. 527 (March 1), p. 157; Solution 15734, Ibid., nr. 529 (May 1), p. 235.
Programs
-
Magma
[n: n in [Floor(Sqrt(1023456789))..Ceiling(Sqrt(9876543210))] | Set(Intseq(n^2)) eq {0..9}]; // Bruno Berselli, Mar 19 2013 (after Giovanni Resta)
-
Maple
lim:=floor(sqrt(9876543210)): for n from floor(sqrt(1023456789)) to lim do d:=[op(convert(n^2, base, 10))]: pandig:=true: for k from 0 to 9 do if(numboccur(k, d)<>1)then pandig:=false: break: fi: od: if(pandig)then printf("%d, ",n): fi: od: # Nathaniel Johnston, Jun 22 2011
-
Mathematica
Select[Range[Floor@Sqrt@1023456789, Ceiling@Sqrt@9876543210], Sort@IntegerDigits[#^2] == Range[0, 9] &] (* Giovanni Resta, Mar 19 2013 *) Select[Range[31992,99381,3],Union[DigitCount[#^2]]=={1}&] (* Harvey P. Dale, Jan 17 2022 *)
Formula
a(n) = sqrt(A036745(n)).
Comments