cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A164565 A156977/3.

Original entry on oeis.org

10681, 10762, 11048, 11724, 11779, 11919, 11951, 12392, 12635, 12924, 13049, 13112, 13515, 14248, 14634, 14672, 15189, 15208, 15529, 16284, 16438, 16451, 16902, 17992, 18306, 18482, 18508, 18527, 18542, 18844, 19107, 19471, 19485
Offset: 1

Views

Author

Zak Seidov, Aug 16 2009

Keywords

Comments

There are exactly 87 such numbers, of which 9 are prime: 11779, 13049, 16451, 19471, 19801, 21017, 22921, 25253, 25349.

Crossrefs

Cf. A156977.

Programs

  • Mathematica
    S={};Do[id=IntegerDigits[9n^2];If[Length[id]==Length[Union@id],S={S,n}],{n,10681,33022}]; S=Flatten[S]

A054037 Numbers k such that k^2 contains exactly 9 different digits.

Original entry on oeis.org

10124, 10128, 10136, 10214, 10278, 11826, 12363, 12543, 12582, 12586, 13147, 13268, 13278, 13343, 13434, 13545, 13698, 14098, 14442, 14676, 14743, 14766, 15353, 15681, 15963, 16549, 16854, 17252, 17529, 17778, 17816, 18072, 19023, 19377, 19569, 19629, 20089
Offset: 1

Views

Author

Asher Auel, Feb 28 2000

Keywords

Comments

There are three prime numbers {13147, 20089, 21397} and corresponding squares {172843609, 403567921, 457831609} necessarily contain zero (otherwise n and n^2 are divisible by 3). - Zak Seidov, Jan 18 2012

Crossrefs

Programs

  • Maple
    f := []; for i from 0 to 200 do if nops({op(convert(i^2,base,10))})=9 then f := [op(f),i] fi; od; f;
  • Mathematica
    okQ[n_] := Module[{n2=n^2}, Max[DigitCount[n2,10]]==1 && IntegerLength[n2]==9]; Select[Range[20000], okQ]  (* Harvey P. Dale, Mar 20 2011 *)
  • Python
    from itertools import count, islice
    def agen(): yield from (k for k in count(10**4) if len(set(str(k*k)))==9)
    print(list(islice(agen(), 37))) # Michael S. Branicky, May 24 2022

A071519 Numbers whose square is a zeroless pandigital number (i.e., use the digits 1 through 9 once).

Original entry on oeis.org

11826, 12363, 12543, 14676, 15681, 15963, 18072, 19023, 19377, 19569, 19629, 20316, 22887, 23019, 23178, 23439, 24237, 24276, 24441, 24807, 25059, 25572, 25941, 26409, 26733, 27129, 27273, 29034, 29106, 30384
Offset: 1

Views

Author

Lekraj Beedassy, Jun 20 2002

Keywords

Crossrefs

A subset of A054037.

Programs

  • Maple
    lim:=floor(sqrt(987654321)): for n from floor(sqrt(123456789)) to lim do d:=[op(convert(n^2, base, 10))]: pandig:=true: for k from 1 to 9 do if(numboccur(k, d)<>1)then pandig:=false: break: fi: od: if(pandig)then printf("%d, ", n): fi: od: # Nathaniel Johnston, Jun 22 2011
  • Mathematica
    Sqrt[#]&/@Select[FromDigits/@Permutations[Range[9]],IntegerQ[Sqrt[#]]&] (* Harvey P. Dale, Sep 23 2011 *)
    Select[Range[11112, 31427,3], DigitCount[#^2] == {1,1,1,1,1,1,1,1,1,0} &]  (* Zak Seidov, Jan 11 2012 *)
  • PARI
    A071519 = select( {is_A071519(n,L=[1..9])=vecsort(digits(n^2))==L}, [1e5\9..1e5\3]) \\ M. F. Hasler, Jun 28 2023

Formula

a(n) = sqrt(A036744(n)). - Zak Seidov, Jan 11 2012

A036745 Squares including each digit exactly once.

Original entry on oeis.org

1026753849, 1042385796, 1098524736, 1237069584, 1248703569, 1278563049, 1285437609, 1382054976, 1436789025, 1503267984, 1532487609, 1547320896, 1643897025, 1827049536, 1927385604, 1937408256, 2076351489, 2081549376, 2170348569, 2386517904, 2431870596
Offset: 1

Views

Author

Keywords

Comments

The last term of this sequence is a(87) = 9814072356.

Crossrefs

Cf. A156977 (square roots).

Programs

  • Maple
    lim:=floor(sqrt(9876543210)): for n from floor(sqrt(1023456789)) to lim do d:=[op(convert(n^2, base, 10))]: pandig:=true: for k from 0 to 9 do if(numboccur(k, d)<>1)then pandig:=false: break: fi: od: if(pandig)then printf("%d, ",n^2): fi: od: # Nathaniel Johnston, Jun 22 2011
  • Mathematica
    Select[ Range[ Floor[ Sqrt[ 1023456789 ] ], Floor[ Sqrt[ 9876543210 ] ] ]^2, Union[ DigitCount[ # ] ]== {1} & ]
    Select[FromDigits/@Permutations[Range[0,9]],IntegerLength[#]==10&&IntegerQ[ Sqrt[#]]&] (* Harvey P. Dale, Apr 09 2012 *)
  • Python
    def c(n): return len(set(str(n))) == 10
    def afull(): return [k*k for k in range(31622, 10**5) if c(k*k)]
    print(afull()) # Michael S. Branicky, Dec 27 2022

A363905 Numbers whose square and cube taken together contain each decimal digit.

Original entry on oeis.org

69, 128, 203, 302, 327, 366, 398, 467, 542, 591, 593, 598, 633, 643, 669, 690, 747, 759, 903, 923, 943, 1016, 1018, 1027, 1028, 1043, 1086, 1112, 1182, 1194, 1199, 1233, 1278, 1280, 1282, 1328, 1336, 1364, 1396, 1419, 1459, 1463, 1467, 1472, 1475
Offset: 1

Views

Author

M. F. Hasler, Jun 27 2023

Keywords

Comments

The first term, a(1) = 69, is the only number for which the square and the cube together contain each decimal digit 0 to 9 exactly once.
a(820) = 6534 is the only number of which the square and cube taken together contain each digit 0 to 9 exactly twice.

Examples

			69^2 = 4761, 69^3 = 328509, which together contain each digit 0-9 exactly once.
		

Crossrefs

Cf. A036744, A054038, A071519 and A156977 for "pandigital" squares.
Cf. A119735: Numbers n such that every digit occurs at least once in n^3.

Programs

  • Mathematica
    fQ[n_] := Union[ Join[ IntegerDigits[n^2], IntegerDigits[n^3]]] == {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; Select[Range@1500, fQ] (* Robert G. Wilson v, Jun 27 2023 *)
  • PARI
    is(k)=#setunion(Set(digits(k^2)),Set(digits(k^3)))>9
    select(is,[1..9999])
    
  • Python
    from itertools import count, islice
    def A363905_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:len(set(str(n**2))|set(str(n**3)))==10,count(max(startvalue,1)))
    A363905_list = list(islice(A363905_gen(),20)) # Chai Wah Wu, Jun 27 2023

A370362 Numbers k such that any two consecutive decimal digits of k^2 differ by 1 after arranging the digits in decreasing order.

Original entry on oeis.org

0, 1, 2, 3, 18, 24, 66, 74, 152, 179, 3678, 3698, 4175, 4616, 5904, 5968, 6596, 7532, 8082, 8559, 9024, 10128, 10278, 11826, 12363, 12543, 12582, 13278, 13434, 13545, 13698, 14442, 14676, 14766, 15681, 15963, 16854, 17529, 17778, 18072, 19023, 19377, 19569, 19629
Offset: 1

Views

Author

Jianing Song, Feb 16 2024

Keywords

Comments

Numbers k such that k^2 is in A215014. There are 160 terms in this sequence.

Examples

			18^2 = 324 consists of the consecutive digits 2, 3 and 4;
24^2 = 576 consists of the consecutive digits 5, 6 and 7;
66^2 = 4356 consists of the consecutive digits 3, 4, 5 and 6;
74^2 = 5476 consists of the consecutive digits 4, 5, 6 and 7.
		

Crossrefs

Cf. A215014, A370370. Supersequence of A156977.
The actual squares are given by A370610.

Programs

  • PARI
    isconsecutive(m, {b=10})=my(v=vecsort(digits(m, b))); for(i=2, #v, if(v[i]!=1+v[i-1], return(0))); 1 \\ isconsecutive(k, b) == 1 if and only if any two consecutive digits of the base-n expansion of m differ by 1 after arranging the digits in decreasing order
    a(n) = isconsecutive(n^2)
    
  • Python
    from math import isqrt
    from sympy.ntheory import digits
    def afull(): return([i for i in range(isqrt(10**10)+1) if len(d:=sorted(str(i*i))) == ord(d[-1])-ord(d[0])+1 == len(set(d))])
    print(afull()) # Michael S. Branicky, Feb 23 2024

A217368 Smallest number having a power that in decimal has exactly n copies of all ten digits.

Original entry on oeis.org

32043, 69636, 643905, 421359, 320127, 3976581, 47745831, 15763347, 31064268, 44626422, 248967789, 85810806, 458764971, 500282265, 2068553967, 711974055, 2652652791, 901992825, 175536645, 3048377607, 3322858521, 1427472867, 3730866429, 9793730157
Offset: 1

Views

Author

James G. Merickel, Oct 01 2012

Keywords

Comments

The exponents that produce the number with a fixed number of copies of each digit are listed in sequence A217378. See there for further comments.
Since we allow A217378(n)=1, the sequence is well defined, with the upper bound a(n) <= 100...99 ~ 10^(10n-1) (n copies of each digit, sorted in increasing order, except for one "1" permuted to the first position). - M. F. Hasler, Oct 05 2012
What is the minimum value of a(n)? Can it be proved that a(n) > 2 for all n? - Charles R Greathouse IV, Oct 16 2012

Examples

			The third term raised to the fifth power (A217378(3)=5), 643905^5 = 110690152879433875483274690625, has three copies of each digit (in its decimal representation), and no number smaller than 643905 has a power with this feature.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2, t = Table[n, {10}], r = Range[0, 9]}, While[c = Count[ IntegerDigits[k^Floor[ Log[k, 10^(10 n)]]], #] & /@ r; c != t, k++]; k] (* Robert G. Wilson v, Nov 28 2012 *)
  • PARI
    is(n,k)=my(v);for(e=ceil((10*n-1)*log(10)/log(k)), 10*n*log(10)/log(k), v=vecsort(digits(k^e)); for(i=1,9,if(v[i*n]!=i-1 || v[i*n+1]!=i, return(0))); return(1)); 0
    a(n)=my(k=2); while(!is(n,k),k++); k \\ Charles R Greathouse IV, Oct 16 2012

Extensions

a(13)-a(14) from James G. Merickel, Oct 06 2012 and Oct 08 2012
a(15)-a(16) from Charles R Greathouse IV, Oct 17 2012
a(17)-a(19) from Charles R Greathouse IV, Oct 18 2012
a(20) from Charles R Greathouse IV, Oct 22 2012
a(21)-a(24) from Giovanni Resta, May 05 2017

A178929 Numbers m such that m*reversal(m) contains every decimal digit exactly once.

Original entry on oeis.org

14979, 19167, 19497, 19839, 20247, 20499, 21657, 21864, 22185, 22227, 22329, 25299, 25755, 26325, 28344, 28665, 29643, 32184, 32319, 32418, 32724, 32889, 34194, 34692, 35265, 35853, 36489, 36957, 39588, 41754, 42327, 42564, 42723, 43476, 43656, 44382, 44445
Offset: 1

Views

Author

Michel Lagneau, Dec 30 2010

Keywords

Comments

There are exactly 141 such numbers, no one of them being prime.
The sequence contains 15 semiprimes: 14979 = 3 * 4993, 19167 = 3 * 6389, 20499 = 3 * 6833, 21657 = 3 * 7219, 36489 = 3 * 12163,..., 98337 = 3 * 32779, and 98823 = 3*32941. - Jonathan Vos Post, Dec 31 2010

Examples

			20247 is in the sequence because 20247*74202 = 1502367894 contains ten different digits;
451410 is in the sequence because 451410*14154 = 6389257140 contains ten different digits.
		

Crossrefs

Programs

  • Maple
    with(numtheory): U:=array(1..50) :c:=0:for i from 5000 to 1000000 do: s1:=0:ll:=length(i):for
      q from 0 to ll do:x:=iquo(i, 10^q):y:=irem(x, 10):s1:=s1+y*10^(ll-1-q): od:n:=i*s1:l:=length(n):if   l=10 then n0:=n:s:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v
      : U[m]:=u:od: B:={0,1,2,3,4,5,6,7,8,9}: A:=convert(U,set):z:=nops(A):else fi:
      if A intersect B = B and z=10 and l=10 then c:=c+1:printf(`%d, `,i): else fi:od:
      print(c):

Extensions

Confirmed terms 14979-45765 and also that there are exactly 141 terms. - John W. Layman, Dec 30 2010

A359346 Reversible pandigital square numbers.

Original entry on oeis.org

1234549876609, 9066789454321, 123452587690084, 123454387666009, 123454987660900, 123456987654400, 123458987664100, 123478988652100, 125688987432100, 146678985432100, 445678965432100, 480096785254321, 900666783454321, 906678945432100, 10223418547690084
Offset: 1

Views

Author

Martin Renner, Dec 27 2022

Keywords

Comments

These are perfect squares containing each digit from 0 to 9 at least once and still remain square numbers (not necessarily of the same length) when reversing the digits.
In 1905, inspired by a question about all pandigital square numbers containing each digit from 0 to 9 exactly once (cf. A036745, A156977), the British mathematician Allan Cunningham (1842-1928) asked for reversible and palindromic pandigital square numbers. In his answer, he gives possible solutions, but actually not the least possible numbers he was asking for in his question.

Examples

			Sequence starts with 1111103^2 = 1234549876609 <~> 9066789454321 = 3011111^2, which is the smallest possible such number.
		

Crossrefs

Programs

  • PARI
    isok(k) = if (issquare(k), my(d=digits(k)); (#Set(d) == 10) && issquare(fromdigits(Vecrev(d)));); \\ Michel Marcus, Dec 31 2022
  • Python
    from math import isqrt
    from itertools import count, islice
    def c(n): return len(set(s:=str(n)))==10 and isqrt(r:=int(s[::-1]))**2==r
    def agen(): yield from (k*k for k in count(10**6) if c(k*k))
    print(list(islice(agen(), 15))) # Michael S. Branicky, Dec 27 2022
    

A363927 Numbers N such that in the concatenation of N^2 and N^3, each of the 10 decimal digits appears equally often.

Original entry on oeis.org

69, 6534, 497375, 539019, 543447, 586476, 589629, 601575, 646479, 858609, 895688, 959097, 46839081, 47469378, 47693199, 47760623, 47841576, 48038964, 48527792, 48733506, 48886836, 48965892, 49229103, 49397283, 49594832, 49670616, 50013116, 50247423, 50359157
Offset: 1

Views

Author

Keywords

Comments

a(3) = 497375 and a(11) = 895688 are the only terms < 10^6 that are not divisible by 3.
Each term has an even number of decimal digits, k, and a corresponding value between 10^(k-1)*100^(1/3) and 10^k. - Michael S. Branicky, Jun 29 2023
Indeed, the number of digits of concat(N^2, N^3) is floor(2*L + 1) + floor(3*L + 1) where L = log_10(N). This is a multiple of 10 iff L mod 2 is in the interval [5/3, 2), which means that N is in the above range for some even k. - M. F. Hasler, Jul 02 2023

Crossrefs

Cf. A363905, A363909: concat(n^2, n^3) has each digit at least once / twice.
Cf. A171102: pandigital numbers.
Cf. A036744, A054038, A071519 and A156977 for "pandigital squares".
Cf. A119735: n^3 is pandigital.

Programs

  • Mathematica
    fQ[n_] := Length@ Union[ Count[ Sort[ Join[ IntegerDigits[n^2], IntegerDigits[n^3]]], #] & /@ Range[0, 9]] == 1; Select[ Range@ 52000000, fQ] (* Robert G. Wilson v, Jul 01 2023 *)
  • PARI
    is(n)={my(v=concat(digits(n^2),digits(n^3)), c=#v); c%10==0 && vecsort(v)==[0..c-1]\(c\10)}
    for(n=1,1e6, is(n)&& print1(n","))

Extensions

a(13) and beyond from Michael S. Branicky, Jun 28 2023
Showing 1-10 of 14 results. Next