cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A157034 Shorthand for A157033, the smallest prime with 2^n digits.

Original entry on oeis.org

1, 1, 9, 19, 37, 33, 121, 283, 37, 241, 3259, 2823, 67017, 13989, 9523, 34281, 159007
Offset: 0

Views

Author

Lekraj Beedassy, Feb 22 2009

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (t-> nextprime(t)-t)(10^(2^n-1)):
    seq(a(n), n=0..10);  # Alois P. Heinz, Mar 02 2022
  • Mathematica
    f[n_] := NextPrime[ 10^(2^n-1)] - 10^(2^n-1); Table[ f@n, {n, 0, 12}] (* Robert G. Wilson v, Mar 17 2009 *)
  • Python
    from sympy import nextprime
    def A157034(n): return 1 if n == 0 else nextprime(10**(2**n-1))-10**(2**n-1) # Chai Wah Wu, Apr 16 2021

Formula

a(n) = A157033(n) - 10^(2^n - 1).

Extensions

a(8)-a(12) from Robert G. Wilson v, Mar 17 2009
a(13)-a(14) from Ray Chandler, Mar 22 2009
a(15) from Jinyuan Wang, Feb 24 2022
a(16) from Michael S. Branicky, Jun 18 2024

A157033 Smallest prime with 2^n digits.

Original entry on oeis.org

2, 11, 1009, 10000019, 1000000000000037, 10000000000000000000000000000033, 1000000000000000000000000000000000000000000000000000000000000121
Offset: 0

Views

Author

Lekraj Beedassy, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := NextPrime[10^(2^n - 1)]; Table[f@n, {n, 0, 7}] (* Robert G. Wilson v, Mar 17 2009 *)

A157035 Largest prime with 2^n digits.

Original entry on oeis.org

7, 97, 9973, 99999989, 9999999999999937, 99999999999999999999999999999979, 9999999999999999999999999999999999999999999999999999999999999949
Offset: 0

Views

Author

Lekraj Beedassy, Feb 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    NextPrime[10^2^Range[0,6],-1] (* Harvey P. Dale, Dec 28 2023 *)
Showing 1-3 of 3 results.