A157092 Consider all consecutive integer Pythagorean 9-tuples (X, X+1, X+2, X+3, X+4, Z-3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.
0, 36, 680, 12236, 219600, 3940596, 70711160, 1268860316, 22768774560, 408569081796, 7331474697800, 131557975478636, 2360712083917680, 42361259535039636, 760141959546795800, 13640194012307284796, 244763350261984330560, 4392100110703410665316, 78813038642399407645160
Offset: 0
Keywords
Examples
a(2)=680 since 680^2 + 681^2 + 682^2 + 683^2 + 684^2 = 761^2 + 762^2 + 763^2 + 764^2.
References
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.
- W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..790
- Tanya Khovanova, Recursive Sequences
- Ron Knott, Pythagorean Triples and Online Calculators
- Index entries for linear recurrences with constant coefficients, signature (19,-19,1).
Programs
-
Magma
[Round((4^(n+1)*((1+Sqrt(5/4))^(2*n+1) + (1-Sqrt(5/4))^(2*n+1)) - 2*4)/4): n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
Mathematica
RecurrenceTable[{a[0]==0,a[1]==36,a[n]==18a[n-1]-a[n-2]+32},a,{n,20}] (* or *) LinearRecurrence[{19,-19,1},{0,36,680},20] (* Harvey P. Dale, Oct 09 2012 *)
-
PARI
x='x+O('x^50); concat([0], Vec(4*x*(-9+x)/((x-1)*(x^2-18*x+1)))) \\ G. C. Greubel, Nov 04 2017
Formula
For n > 1, a(n) = 18*a(n-1) - a(n-2) + 32.
For n > 0, a(n) = 9*a(n-1) + 8*A157093(n-1) + 4.
a(n) = (4^(n+1)((1+sqrt(5/4))^(2n+1) + (1-sqrt(5/4))^(2n+1)) - 2*4)/4.
Lim_{n->inf} a(n+1)/a(n) = 4*(1+sqrt(5/4))^2 = 9 + 2*sqrt(20).
From R. J. Mathar, Mar 19 2009: (Start)
G.f.: 4*x*(-9+x)/((x-1)*(x^2-18*x+1)).
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3).
a(n) = 4*A119032(n+1). (End)
For n > 0, 1/a(n) = Sum_{k>=1} F(3*k)/phi^(6*k*n + 3*k), where F(n) = A000045(n) and phi = A001622 = (sqrt(5)+1)/2. - Diego Rattaggi, Dec 28 2019
E.g.f.: (1/2)*((2 + sqrt(5))*exp((9+4*sqrt(5))*x) + (2 - sqrt(5))*exp((9-4*sqrt(5))*x) - 4*exp(x)). - Stefano Spezia, Dec 29 2019
Extensions
Terms a(15) onward added by G. C. Greubel, Nov 06 2017
Comments