cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A090734 Decimal expansion of 4th Madelung constant (negated).

Original entry on oeis.org

1, 8, 3, 9, 3, 9, 9, 0, 8, 4, 0, 4, 5, 0, 4, 7, 0, 6, 6, 2, 4, 7, 3, 0, 5, 4, 7, 9, 5, 6, 7, 2, 3, 0, 4, 7, 6, 4, 2, 2, 7, 8, 3, 5, 9, 4, 8, 1, 7, 7, 3, 0, 5, 7, 9, 1, 6, 7, 9, 7, 8, 6, 7, 7, 5, 7, 2, 8, 1, 8, 2, 5, 2, 6, 4, 3, 7, 3, 3, 5, 2, 2, 8, 4, 1, 5, 8, 7, 4, 1, 3, 3, 9, 6, 6, 0, 3, 7, 7, 6, 0, 2, 9, 3, 6
Offset: 1

Views

Author

Benoit Cloitre, Jan 18 2004

Keywords

Examples

			-1.83939908404504706624730547956723047642278359481773...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 77.

Crossrefs

Programs

  • Mathematica
    RealDigits[8*(5 - 3*Sqrt[2])*Zeta[1/2]*Zeta[-1/2], 10, 120][[1]] (* Amiram Eldar, May 26 2023 *)
  • PARI
    8*(5-3*sqrt(2))*zeta(1/2)*zeta(-1/2) \\ Charles R Greathouse IV, Jun 07 2016

Formula

M_4 = -8*(5-3*sqrt(2))*zeta(1/2)*zeta(-1/2) = -8 *(A157122-6) * A059750 * A211113.

A157119 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+103)^2 = y^2.

Original entry on oeis.org

0, 84, 105, 309, 765, 884, 2060, 4712, 5405, 12257, 27713, 31752, 71688, 161772, 185313, 418077, 943125, 1080332, 2436980, 5497184, 6296885, 14204009, 32040185, 36701184, 82787280, 186744132, 213910425, 482519877, 1088424813, 1246761572
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

Corresponding values y of solutions (x, y) are in A157120.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (11+3*sqrt(2))/(11-3*sqrt(2)) for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*(11-3*sqrt(2))^2/(11+3*sqrt(2))^2 for n mod 3 = 0.

Crossrefs

Cf. A157120, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A157121 (decimal expansion of 11+3*sqrt(2)), A157122 (decimal expansion of 11-3*sqrt(2)), A157123 (decimal expansion of (11+3*sqrt(2))/(11-3*sqrt(2))).

Programs

  • PARI
    {forstep(n=0, 1300000000, [1, 3], if(issquare(2*n^2+206*n+10609), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+206 for n > 6; a(1) = 0, a(2) = 84, a(3) = 105, a(4) = 309, a(5) = 765, a(6) = 884.
G.f.: x*(84+21*x+204*x^2-48*x^3-7*x^4-48*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 103*A001652(k) for k >= 0.

A157121 Decimal expansion of 11+3*sqrt(2).

Original entry on oeis.org

1, 5, 2, 4, 2, 6, 4, 0, 6, 8, 7, 1, 1, 9, 2, 8, 5, 1, 4, 6, 4, 0, 5, 0, 6, 6, 1, 7, 2, 6, 2, 9, 0, 9, 4, 2, 3, 5, 7, 0, 9, 0, 1, 5, 6, 2, 6, 1, 3, 0, 8, 4, 4, 2, 1, 9, 5, 3, 0, 0, 3, 9, 2, 1, 3, 9, 7, 2, 1, 9, 7, 4, 3, 5, 3, 8, 6, 3, 2, 1, 1, 1, 6, 5, 5, 1, 1, 6, 2, 6, 0, 2, 9, 8, 2, 9, 2, 4, 7, 1, 8, 2, 0, 5, 0
Offset: 2

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (11+3*sqrt(2))/(11-3*sqrt(2)) for n mod 3 = {1, 2}, b = A157119.
lim_{n -> infinity} b(n)/b(n-1) = (11+3*sqrt(2))/(11-3*sqrt(2)) for n mod 3 = {0, 2}, b = A157120.

Examples

			11+3*sqrt(2) = 15.24264068711928514640...
		

Crossrefs

Cf. A157119, A157120, A157122 (decimal expansion of 11-3*sqrt(2)), A157123 (decimal expansion of (11+3*sqrt(2))/(11-3*sqrt(2))).

Programs

  • Maple
    evalf[120](11+3*sqrt(2)); # Muniru A Asiru, Feb 12 2019
  • Mathematica
    RealDigits[11+3*Sqrt[2],10,120][[1]] (* Harvey P. Dale, Sep 12 2012 *)

Formula

Equals 7+A083729 = 11+A010474. [R. J. Mathar, Feb 27 2009]

A157123 Decimal expansion of (11 + 3*sqrt(2))/(11 - 3*sqrt(2)).

Original entry on oeis.org

2, 2, 5, 5, 7, 0, 9, 6, 6, 1, 3, 2, 6, 4, 4, 9, 2, 5, 4, 5, 7, 1, 9, 5, 5, 8, 8, 1, 5, 3, 2, 4, 2, 7, 8, 9, 5, 0, 0, 5, 8, 0, 9, 1, 6, 2, 8, 6, 2, 8, 9, 8, 7, 6, 5, 3, 3, 6, 5, 1, 3, 2, 3, 0, 1, 6, 8, 8, 1, 8, 8, 6, 9, 6, 9, 4, 1, 6, 5, 6, 7, 5, 3, 7, 9, 8, 5, 9, 9, 7, 3, 4, 5, 2, 6, 6, 3, 5, 3, 2, 0, 4, 3, 7, 9
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

Lim_{n -> infinity} b(n)/b(n-1) = (11+3*sqrt(2))/(11-3*sqrt(2)) for n mod 3 = {1, 2}, b = A157119.
Lim_{n -> infinity} b(n)/b(n-1) = (11+3*sqrt(2))/(11-3*sqrt(2)) for n mod 3 = {0, 2}, b = A157120.

Examples

			(11 + 3*sqrt(2))/(11 - 3*sqrt(2)) = 2.25570966132644925457...
		

Crossrefs

Cf. A157119, A157120, A157121 (decimal expansion of 11+3*sqrt(2)), A157122 (decimal expansion of 11-3*sqrt(2)).

Programs

  • Magma
    (11+3*Sqrt(2))/(11-3*Sqrt(2)) // G. C. Greubel, Jan 27 2018
  • Mathematica
    RealDigits[(11 + 3*Sqrt[2])/(11 - 3*Sqrt[2]), 10, 100][[1]] (* G. C. Greubel, Jan 27 2018 *)
  • PARI
    (11+3*sqrt(2))/(11-3*sqrt(2)) \\ G. C. Greubel, Jan 27 2018
    

A157120 Positive numbers y such that y^2 is of the form x^2+(x+103)^2 with integer x.

Original entry on oeis.org

73, 103, 205, 233, 515, 1157, 1325, 2987, 6737, 7717, 17407, 39265, 44977, 101455, 228853, 262145, 591323, 1333853, 1527893, 3446483, 7774265, 8905213, 20087575, 45311737, 51903385, 117078967, 264096157, 302515097, 682386227, 1539265205
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

(-48, a(1)) and (A157119(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+103)^2 = y^2.

Examples

			(-48, a(1)) = (-48, 73) is a solution: (-48)^2+(-48+103)^2 = 2304+3025 = 5329 = 73^2.
(A157119(1), a(2)) = (0, 103) is a solution: 0^2+(0+103)^2 = 10609 = 103^2,
(A157119(3), a(4)) = (105, 233) is a solution: 105^2+(105+103)^2 = 11025+43264 = 54289 = 233^2.
		

Crossrefs

Cf. A157119, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157121 (decimal expansion of 11+3*sqrt(2)), A157122 (decimal expansion of 11-3*sqrt(2)), A157123 (decimal expansion of (11+3*sqrt(2))/(11-3*sqrt(2))).

Programs

  • Mathematica
    Select[Table[Sqrt[x^2+(x+103)^2],{x,-50,3*10^6}],IntegerQ] (* THe program generates the first 20 terms of the sequence. *) (* or *) LinearRecurrence[ {0,0,6,0,0,-1},{73,103,205,233,515,1157},50](* Harvey P. Dale, Aug 19 2020 *)
  • PARI
    {forstep(n=-48, 1100000000, [1, 3], if(issquare(2*n^2+206*n+10609, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1) = 73, a(2) = 103, a(3) = 205, a(4) = 233, a(5) = 515, a(6) = 1157.
G.f.: x*(1-x)*(73+176*x+381*x^2+176*x^3+73*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 103*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))*(11-3*sqrt(2))^2/(11+3*sqrt(2))^2 for n mod 3 = 1.
Limit_{n -> oo} a(n)/a(n-1) = (11+3*sqrt(2))/(11-3*sqrt(2)) for n mod 3 = {0, 2}.

Extensions

Typo corrected by Klaus Brockhaus, Mar 01 2009
Showing 1-5 of 5 results.