cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A204021 Triangle read by rows: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min(2i-1,2j-1) (A157454).

Original entry on oeis.org

1, 1, -1, 2, -4, 1, 4, -12, 9, -1, 8, -32, 40, -16, 1, 16, -80, 140, -100, 25, -1, 32, -192, 432, -448, 210, -36, 1, 64, -448, 1232, -1680, 1176, -392, 49, -1, 128, -1024, 3328, -5632, 5280, -2688, 672, -64, 1, 256, -2304, 8640, -17472, 20592
Offset: 0

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.
a(0)=1 by convention. - Philippe Deléham, Nov 17 2013
The n roots of the n-th polynomial are 1/(1+cos((2*k-1)*Pi/(2*n))) for k = 1..n. See my pdf in the link section for the proof. - Jianing Song, Dec 01 2023

Examples

			Top of the triangle:
  1
  1....-1
  2....-4.....1
  4....-12....9....-1
  8....-32....40...-16....1
  16...-80....140..-100...25....-1
  32...-192...432..-448...210...-36....1
  ...
-448=2*(-100)-2*140-(-32). - _Philippe Deléham_, Nov 17 2013
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Min[2 i - 1, 2 j - 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[6]] (* 6x6 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]   (* A157454 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                  (* A204021 *)
    TableForm[Table[c[n], {n, 1, 10}]]

Formula

From Peter Bala, May 01 2012: (Start)
The triangle appears to be a signed version of the row reverse of A211957.
If true, then for 0 <= k <= n-1, T(n,k) = (-1)^k*n/(n-k)*2^(n-k-1)*binomial(2*n-k-1,k) and Sum_{k = 0..n} T(n,k)*x^(n-k) = 1/2*(-1)^n*(b(2*n,-2*x) + 1)/b(n,-2*x), where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k)*x^k are the Morgan-Voyce polynomials of A085478.
Conjectural o.g.f.: t*(1-x-x^2*t)/(1-2*t*(1-x)+t^2*x^2) = (1-x)*t + (2-4*x+x^2)*t^2 + .... (End)
T(n,k)=2*T(n-1,k)-2*T(n-1,k-1)-T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 of k<0 or if k>n. - Philippe Deléham, Nov 17 2013

A157455 Number generated by regarding the numbers in row n of A157454 as digits of a base n number.

Original entry on oeis.org

1, 3, 19, 125, 1141, 12943, 182743, 3080025, 60530761, 1357997531, 34237329611, 957927505717, 29446189175677, 986272776455415, 35746439978786671, 1393753996031259953, 58165330912030118161, 2586788074128361802419
Offset: 1

Views

Author

Roger L. Bagula, Mar 01 2009

Keywords

Comments

Note that for odd n, the digits will include n itself.

Examples

			Row 4 of A157454 is 1,3,3,1. 1331 in base 4 = 4^3 + 3*4^2 + 3*4 + 1 = 125, so a(4) = 125.
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] =Min[1 + 2*m, 1 + 2*(n - m)];
    Table[FromDigits[{Table[t[n, m], {m, 0, n}], n + 1}, n + 1], {n, 0, 20}]

Formula

t(n,m)=Min[2*m - 1, 2*(n - m) + 1]; a(n)=FromDigits[{Table[t[n, m], {m, 1, n}], n}, n].

Extensions

Edited by Franklin T. Adams-Watters, Sep 25 2011

A204016 Symmetric matrix based on f(i,j) = max(j mod i, i mod j), by antidiagonals.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 0, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 0, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 0, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 0, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 0, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 7
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2012

Keywords

Comments

A204016 represents the matrix M given by f(i,j) = max{(j mod i), (i mod j)} for i >= 1 and j >= 1. See A204017 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
Guide to symmetric matrices M based on functions f(i,j) and characteristic polynomial sequences (c.p.s.) with interlaced zeros:
f(i,j)..........................M.........c.p.s.
C(i+j,j)........................A007318...A045912
min(i,j)........................A003983...A202672
max(i,j)........................A051125...A203989
(i+j)*min(i,j)..................A203990...A203991
|i-j|...........................A049581...A203993
max(i-j+1,j-i+1)................A143182...A203992
min(i-j+1,j-i+1)................A203994...A203995
min(i(j+1),j(i+1))..............A203996...A203997
max(i(j+1)-1,j(i+1)-1)..........A203998...A203999
min(i(j+1)-1,j(i+1)-1)..........A204000...A204001
min(2i+j,i+2j)..................A204002...A204003
max(2i+j-2,i+2j-2)..............A204004...A204005
min(2i+j-2,i+2j-2)..............A204006...A204007
max(3i+j-3,i+3j-3)..............A204008...A204011
min(3i+j-3,i+3j-3)..............A204012...A204013
min(3i-2,3j-2)..................A204028...A204029
1+min(j mod i, i mod j).........A204014...A204015
max(j mod i, i mod j)...........A204016...A204017
1+max(j mod i, i mod j).........A204018...A204019
min(i^2,j^2)....................A106314...A204020
min(2i-1, 2j-1).................A157454...A204021
max(2i-1, 2j-1).................A204022...A204023
min(i(i+1)/2,j(j+1)/2)..........A106255...A204024
gcd(i,j)........................A003989...A204025
gcd(i+1,j+1)....................A204030...A204111
min(F(i+1),F(j+1)),F=A000045....A204026...A204027
gcd(F(i+1),F(j+1)),F=A000045....A204112...A204113
gcd(L(i),L(j)),L=A000032........A204114...A204115
gcd(2^i-1,2^j-2)................A204116...A204117
gcd(prime(i),prime(j))..........A204118...A204119
gcd(prime(i+1),prime(j+1))......A204120...A204121
gcd(2^(i-1),2^(j-1))............A144464...A204122
max(floor(i/j),floor(j/i))......A204123...A204124
min(ceiling(i/j),ceiling(j/i))..A204143...A204144
Delannoy matrix.................A008288...A204135
max(2i-j,2j-i)..................A204154...A204155
-1+max(3i-j,3j-i)...............A204156...A204157
max(3i-2j,3j-2i)................A204158...A204159
floor((i+1)/2)..................A204164...A204165
ceiling((i+1)/2)................A204166...A204167
i+j.............................A003057...A204168
i+j-1...........................A002024...A204169
i*j.............................A003991...A204170
..abbreviation below: AOE means "all 1's except"
AOE f(i,i)=i....................A204125...A204126
AOE f(i,i)=A000045(i+1).........A204127...A204128
AOE f(i,i)=A000032(i)...........A204129...A204130
AOE f(i,i)=2i-1.................A204131...A204132
AOE f(i,i)=2^(i-1)..............A204133...A204134
AOE f(i,i)=3i-2.................A204160...A204161
AOE f(i,i)=floor((i+1)/2).......A204162...A204163
...
Other pairs (M, c.p.s.): (A204171, A204172) to (A204183, A204184)
See A202695 for a guide to choices of symmetric matrix M for which the zeros of the characteristic polynomials are all positive.

Examples

			Northwest corner:
  0 1 1 1 1 1 1 1
  0 1 2 2 2 2 2 2
  1 2 0 3 3 3 3 3
  1 2 3 0 4 4 4 4
  1 2 3 4 0 5 5 5
  1 2 3 4 5 0 6 6
  1 2 3 4 5 6 0 7
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Max[Mod[i, j], Mod[j, i]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
    {n, 1, 12}, {i, 1, n}]]  (* A204016 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]               (* A204017 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A098353 Multiplication table of the odd numbers read by antidiagonals.

Original entry on oeis.org

1, 3, 3, 5, 9, 5, 7, 15, 15, 7, 9, 21, 25, 21, 9, 11, 27, 35, 35, 27, 11, 13, 33, 45, 49, 45, 33, 13, 15, 39, 55, 63, 63, 55, 39, 15, 17, 45, 65, 77, 81, 77, 65, 45, 17, 19, 51, 75, 91, 99, 99, 91, 75, 51, 19, 21, 57, 85, 105, 117, 121, 117, 105, 85, 57, 21
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004

Keywords

Comments

a(n) is also the first row of the denominators of the Gram Matrix generated from the normal equations with inner product of the 2D integral with both ranges -1 to 1 over all even 2D polynomials. Subsequent rows and remaining Gram Matrix rows for other 2D polynomials do not currently appear in the OEIS. - John Spitzer, Feb 13 2020

Examples

			Array begins:
   1,  3,  5,  7,  9,  11 ...
   3,  9, 15, 21, 27,  33 ...
   5, 15, 25, 35, 45,  55 ...
   7, 21, 35, 49, 63,  77 ...
   9, 27, 45, 63, 81,  99 ...
  11, 33, 55, 77, 99, 121 ...
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Maximum(2*k-1, 2*(n-k)+1) *Minimum(2*k-1, 2*(n-k)+1) ))) # G. C. Greubel, Jul 23 2019
  • Magma
    [[Max(2*k-1, 2*(n-k)+1)*Min(2*k-1, 2*(n-k)+1): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 23 2019
    
  • Maple
    seq(seq(max(2*k-1, 2*(n-k)+1)*min(2*k-1, 2*(n-k)+1), k = 1..n), n = 1..12); # G. C. Greubel, Aug 16 2019
  • Mathematica
    Table[Max[2*k-1, 2*(n-k)+1]*Min[2*k-1, 2*(n-k)+1], {n,0,12}, {k,0,n} ]//Flatten (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    {T(n, k) = max(2*k-1, 2*(n-k)+1)*min(2*k-1, 2*(n-k)+1)};
    for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    [[max(2*k-1, 2*(n-k)+1)*min(2*k-1, 2*(n-k)+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = A204022(n,k) * A157454(n,k). - Ridouane Oudra, Jul 20 2019

A347026 Irregular triangle read by rows in which row n lists the first n odd numbers, followed by the first n odd numbers in decreasing order.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 7, 7, 5, 3, 1, 1, 3, 5, 7, 9, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 13, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 15, 15, 13, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 17, 15, 13, 11, 9, 7, 5, 3, 1
Offset: 1

Views

Author

Eddie Gutierrez, Aug 11 2021

Keywords

Comments

The terms of this sequence are the numbers in an irregular triangle corresponding to the addition of rows when multiplying two large numbers via a novel method (see Links).
Sums of the rising diagonals yield sequence A007980.
When the 2n terms in row n are used as the coefficients of a (2n-1)st-order polynomial in x, dividing that polynomial by x+1 produces a (2n-2)nd-order polynomial whose coefficients are the n-th row of A004737 (if that sequence is taken as an irregular triangle with 2n-1 terms in its n-th row). E.g., for n=3, (x^5 + 3x^4 + 5x^3 + 5x^2 + 3x + 1)/(x+1) = x^4 + 2x^3 + 3x^2 + 2x + 1.

Examples

			Triangle begins:
  1,  1;
  1,  3,  3,  1;
  1,  3,  5,  5,  3,  1;
  1,  3,  5,  7,  7,  5,  3,  1;
  1,  3,  5,  7,  9,  9,  7,  5,  3,  1;
  1,  3,  5,  7,  9, 11, 11,  9,  7,  5,  3,  1;
  1,  3,  5,  7,  9, 11, 13, 13, 11,  9,  7,  5,  3,  1;
  1,  3,  5,  7,  9, 11, 13, 15, 15, 13, 11,  9,  7,  5,  3,  1;
...
		

Crossrefs

Even-indexed rows of A157454.
Antidiagonal sums give A007980.
Row lengths give nonzero terms of A005843.
Cf. A004737.

Programs

  • C
    #include 
    int main()
    {
       int n, k;
       for (n=1; n<=13; n++)
       {
          for (k=1; k<=n; k++)
          {
             printf("%d ", 2*k - 1);
          }
          for (k=n+1; k<=2*n; k++)
          {
             printf("%d ", 4*n - 2*k + 1);
          }
          printf("\n");
       }
       return 0;
    }
    
  • Mathematica
    Array[Join[#, Reverse[#]] &@Range[1, 2 # - 1, 2] &, 9] // Flatten (* Michael De Vlieger, Aug 18 2021 *)
    Flatten[Table[Join[Range[1,2n+1,2],Range[2n+1,1,-2]],{n,0,10}]] (* Harvey P. Dale, Aug 31 2024 *)
  • PARI
    row(n) = n*=2; vector(n, k, min(2*k-1, 2*(n-k)+1)); \\ Michel Marcus, Aug 17 2021

Formula

T(n,k) = 2k - 1 for 1 <= k <= n,
4n - 2k + 1 for n+1 <= k <= 2n.

Extensions

Better definition from Omar E. Pol, Aug 14 2021
Showing 1-5 of 5 results.