cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A156567 Positive numbers y such that y^2 is of the form x^2+(x+23)^2 with integer x.

Original entry on oeis.org

17, 23, 37, 65, 115, 205, 373, 667, 1193, 2173, 3887, 6953, 12665, 22655, 40525, 73817, 132043, 236197, 430237, 769603, 1376657, 2507605, 4485575, 8023745, 14615393, 26143847, 46765813, 85184753, 152377507, 272571133, 496493125
Offset: 1

Views

Author

Klaus Brockhaus, Feb 11 2009 , Feb 16 2009

Keywords

Comments

(-8, a(1)) and(A118337(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+23)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (27+10*sqrt(2))/23 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (627+238*sqrt(2))/23^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=m^2-2 a prime number in A028871, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+2, a(3)=3m^2-10m+8, a(4)=3p, a(5)=3m^2+10m+8, a(6)=20m^2-58m+42.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=m^2+2m+2, b(3)=5m^2-14m+10, b(4)=5p, b(5)=5m^2+14m+10, b(6)=29m^2-82m+58. [From Mohamed Bouhamida, Sep 09 2009]

Examples

			(-8, a(1)) = (-8, 17) is a solution: (-8)^2+(-8+23)^2 = 64+225 = 289 = 17^2.
(A118337(1), a(2)) = (0, 23) is a solution: 0^2+(0+23)^2 = 529 = 23^2.
(A118337(3), a(4)) = (33, 65) is a solution: 33^2+(33+23)^2 = 1089+3136 = 4225 = 65^2.
		

Crossrefs

Cf. A118337, A156035 (decimal expansion of 3+2*sqrt(2)), A156571 (decimal expansion of (27+10*sqrt(2))/23), A157472 (decimal expansion of (627+238*sqrt(2))/23^2).
A156570 (first trisection), A156568 (second trisection), A156569 (third trisection).

Programs

  • PARI
    {forstep(n=-8, 360000000, [1,3], if(issquare(2*n*(n+23)+529, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=17, a(2)=23, a(3)=37, a(4)=65, a(5)=115, a(6)=205.
G.f.: x*(1-x)*(17+40*x+77*x^2+40*x^3+17*x^4)/(1-6*x^3+x^6).

Extensions

G.f. corrected, third and fourth comment edited, cross-reference added by Klaus Brockhaus, Sep 18 2009

A156572 Squares of the form k^2+(k+23)^2 with integer k.

Original entry on oeis.org

289, 529, 1369, 4225, 13225, 42025, 139129, 444889, 1423249, 4721929, 15108769, 48344209, 160402225, 513249025, 1642275625, 5448949489, 17435353849, 55789022809, 185103876169, 592288777609, 1895184495649, 6288082836025
Offset: 1

Views

Author

Klaus Brockhaus, Feb 11 2009

Keywords

Comments

Square roots of k^2+(k+17)^2 are in A156567, values k are in A118337.

Examples

			4225 = 65^2 is of the form k^2+(k+23)^2 with k = 33: 33^2+56^2 = 4225. Hence 4225 is in the sequence.
		

Crossrefs

Cf. A156567, A156575 (first trisection), A156573 (second trisection), A156574 (third trisection).
Cf. A118337, A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)), A156571 (decimal expansion of (27+10*sqrt(2))/23), A157472 (decimal expansion of (627+238*sqrt(2))/23^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,34,-34,0,-1,1}, {289,529,1369,4225,13225,42025,139129}, 30] (* Harvey P. Dale, Mar 21 2020 *)
  • PARI
    {forstep(n=-8, 1800000, [1, 3], if(issquare(a=2*n*(n+23)+529), print1(a, ",")))}
    
  • Sage
    def f(n,p,q): return p*chebyshev_U(n,17) - q*chebyshev_U(n-1,17)
    def a(n):
        if (n%3==0): return -289*bool(n==0) + (1/4)*(529 + 3*f(n/3, 209, 5457))
        elif (n%3==1): return (1/4)*(529 + 3*f((n-1)/3, 209, 1649))
        else: return (1/4)*(529 + 3*f((n-2)/3, 529, 529))
    [a(n) for n in (1..30)] # G. C. Greubel, Jan 04 2022

Formula

a(n) = 34*a(n-3) - a(n-6) - 4232 for n > 6; a(1)=289, a(2)=529, a(3)=1369, a(4)=4225, a(5)=13225, a(6)=42025.
a(n) = A156567(n)^2.
G.f.: x*(289 +240*x +840*x^2 -6970*x^3 +840*x^4 +240*x^5 +289*x^6)/((1-x)*(1 -34*x^3 +x^6)).
Limit_{n -> infinity} a(n)/a(n-3) = 17 + 12*sqrt(2).
Limit_{n -> infinity} a(n)/a(n-1) = ((627 + 238*sqrt(2))/23^2)^2 for n mod 3 = 1.
Limit_{n -> infinity} a(n)/a(n-1) = ((27 + 10*sqrt(2))/23)^2 for n mod 3 = {0, 2}.
a(n) = -289*[n=0] + (529/4) + (3/4)*( f(n/3, 209, 5457)*(n mod 3 = 1) + f((n-1)/3, 209, 1649)*(n mod 3 = 1) + f((n-2)/2, 529, 529)*(n mod 3 = 2) ), where f(n, p, q) = p*ChebyshevU(n, 17) - q*ChebyshevU(n-1, 17). - G. C. Greubel, Jan 04 2022

Extensions

Revised by Klaus Brockhaus, Feb 16 2009
G.f. corrected, third comment and cross-references edited by Klaus Brockhaus, Sep 22 2009
Showing 1-2 of 2 results.