A156567
Positive numbers y such that y^2 is of the form x^2+(x+23)^2 with integer x.
Original entry on oeis.org
17, 23, 37, 65, 115, 205, 373, 667, 1193, 2173, 3887, 6953, 12665, 22655, 40525, 73817, 132043, 236197, 430237, 769603, 1376657, 2507605, 4485575, 8023745, 14615393, 26143847, 46765813, 85184753, 152377507, 272571133, 496493125
Offset: 1
(-8, a(1)) = (-8, 17) is a solution: (-8)^2+(-8+23)^2 = 64+225 = 289 = 17^2.
(A118337(1), a(2)) = (0, 23) is a solution: 0^2+(0+23)^2 = 529 = 23^2.
(A118337(3), a(4)) = (33, 65) is a solution: 33^2+(33+23)^2 = 1089+3136 = 4225 = 65^2.
Cf.
A118337,
A156035 (decimal expansion of 3+2*sqrt(2)),
A156571 (decimal expansion of (27+10*sqrt(2))/23),
A157472 (decimal expansion of (627+238*sqrt(2))/23^2).
-
{forstep(n=-8, 360000000, [1,3], if(issquare(2*n*(n+23)+529, &k), print1(k, ",")))}
G.f. corrected, third and fourth comment edited, cross-reference added by
Klaus Brockhaus, Sep 18 2009
A156572
Squares of the form k^2+(k+23)^2 with integer k.
Original entry on oeis.org
289, 529, 1369, 4225, 13225, 42025, 139129, 444889, 1423249, 4721929, 15108769, 48344209, 160402225, 513249025, 1642275625, 5448949489, 17435353849, 55789022809, 185103876169, 592288777609, 1895184495649, 6288082836025
Offset: 1
4225 = 65^2 is of the form k^2+(k+23)^2 with k = 33: 33^2+56^2 = 4225. Hence 4225 is in the sequence.
Cf.
A118337,
A156035 (decimal expansion of 3+2*sqrt(2)),
A156164 (decimal expansion of 17+12*sqrt(2)),
A156571 (decimal expansion of (27+10*sqrt(2))/23),
A157472 (decimal expansion of (627+238*sqrt(2))/23^2).
-
LinearRecurrence[{1,0,34,-34,0,-1,1}, {289,529,1369,4225,13225,42025,139129}, 30] (* Harvey P. Dale, Mar 21 2020 *)
-
{forstep(n=-8, 1800000, [1, 3], if(issquare(a=2*n*(n+23)+529), print1(a, ",")))}
-
def f(n,p,q): return p*chebyshev_U(n,17) - q*chebyshev_U(n-1,17)
def a(n):
if (n%3==0): return -289*bool(n==0) + (1/4)*(529 + 3*f(n/3, 209, 5457))
elif (n%3==1): return (1/4)*(529 + 3*f((n-1)/3, 209, 1649))
else: return (1/4)*(529 + 3*f((n-2)/3, 529, 529))
[a(n) for n in (1..30)] # G. C. Greubel, Jan 04 2022
G.f. corrected, third comment and cross-references edited by
Klaus Brockhaus, Sep 22 2009
Showing 1-2 of 2 results.
Comments