cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A118337 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 23)^2 = y^2.

Original entry on oeis.org

0, 12, 33, 69, 133, 252, 460, 832, 1525, 2737, 4905, 8944, 16008, 28644, 52185, 93357, 167005, 304212, 544180, 973432, 1773133, 3171769, 5673633, 10334632, 18486480, 33068412, 60234705, 107747157, 192736885, 351073644, 627996508, 1123352944, 2046207205
Offset: 1

Views

Author

Mohamed Bouhamida, May 14 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+23, y).
Corresponding values y of solutions (x, y) are in A156567.
For the generic case x^2 + (x + p)^2 = y^2 with p = m^2 - 2 a (prime) number in A028871, m>=5, the x values are given by the sequence defined by a(n) = 6*a(n-3) - a(n-6) + 2p with a(1)=0, a(2) = 2m + 2, a(3) = 3*m^2 - 10m + 8, a(4)=3p, a(5) = 3*m^2 + 10m + 8, a(6) = 20*m^2 - 58m + 42. Pairs (p, m) are (23, 5), (47, 7), (79, 9), (167, 13), (223, 15), (359, 19), (439, 21), (727, 27), (839, 29), ...
Limit_{n -> oo} a(n)/a(n-3) = 3 + 2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (27 + 10*sqrt(2))/23 for n mod 3 = {1, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (3 + 2*sqrt(2))/((27 + 10*sqrt(2))/23)^2 for n mod 3 = 0.
For the generic case x^2 + (x + p)^2=y^2 with p = m^2 - 2 a prime number in A028871, m>=5, Y values are given by the sequence defined by b(n) = 6*b(n-3) - b(n-6) with b(1) = p, b(2) = m^2 + 2m + 2, b(3) = 5m^2 - 14m + 10, b(4) = 5p, b(5) = 5m^2 + 14m + 10, b(6) = 29m^2 - 82m + 58. - Mohamed Bouhamida, Sep 09 2009
For the generic case x^2 + (x + p)^2 = y^2 with p = m^2 - 2 a prime number, m>=5, the first three consecutive solutions are: (0;p), (2m+2; m^2+2m+2), (3*m^2-10m+8; 5*m^2-14m+10) and the other solutions are defined by: (X(n); Y(n))= (3*X(n-3)+2*Y(n-3)+p; 4*X(n-3)+3*Y(n-3)+2p). - Mohamed Bouhamida, Aug 19 2019
X(n) = 6*X(n-3) - X(n-6) + 2*p, and Y(n) = 6*Y(n-3) - Y(n-6) (can be easily proved using X(n) = 3*X(n-3) + 2*Y(n-3) + p, and Y(n) = 4*X(n-3) + 3*Y(n-3) + 2*p). - Mohamed Bouhamida, Aug 20 2019

Crossrefs

Cf. A156567, A028871 (primes of form n^2 - 2), A156035 (decimal expansion of 3 + 2*sqrt(2)), A156571 (decimal expansion of (27 + 10*sqrt(2))/23).
Cf. A118675 (p=47), A118676 (p=79), A130608 (p=167), A130609 (p=223), A130610 (p=359), A130645 (p=439), A130646 (p=727), A130647 (p=839).

Programs

  • Magma
    I:=[0,12,33,69,133,252,460]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, May 04 2018
  • Mathematica
    Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+23)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,12,33,69,133,252,460},50] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
  • PARI
    forstep(n=0, 1124000000, [1, 3], if(issquare(2*n*(n+23)+529), print1(n, ",")))
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(12+21*x+36*x^2-8*x^3-7*x^4-8*x^5)/((1-x)*(1-6*x^3+x^6)))) \\ G. C. Greubel, May 04 2018
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 46 for n > 6; a(1)=0, a(2)=12, a(3)=33, a(4)=69, a(5)=133, a(6)=252.
G.f.: x*(12 + 21*x + 36*x^2 - 8*x^3 - 7*x^4 - 8*x^5)/((1-x)*(1 - 6*x^3 + x^6)).

Extensions

Edited by Klaus Brockhaus, Feb 10 2009

A156571 Decimal expansion of (27 + 10*sqrt(2))/23.

Original entry on oeis.org

1, 7, 8, 8, 7, 8, 8, 5, 0, 5, 3, 7, 9, 6, 0, 6, 5, 4, 2, 9, 5, 7, 2, 5, 5, 9, 6, 7, 0, 4, 7, 6, 9, 4, 8, 1, 6, 7, 6, 9, 4, 2, 2, 5, 5, 4, 5, 1, 1, 7, 1, 6, 5, 5, 3, 5, 5, 5, 0, 7, 8, 1, 4, 6, 9, 5, 2, 4, 9, 2, 3, 8, 1, 9, 4, 0, 0, 4, 6, 5, 3, 8, 6, 3, 0, 6, 0, 3, 2, 7, 5, 7, 9, 4, 6, 2, 6, 7, 7, 0, 7, 5, 4, 3, 5
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2009

Keywords

Comments

Lim_{n -> infinity} a(n)/a(n-1) = (27+10*sqrt(2))/23 for n mod 3 = {1, 2}, b = A118337, A156567.
Lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/((27+10*sqrt(2))/23)^2 for n mod 3 = 0, b = A118337, A156567.

Examples

			(27 + 10*sqrt(2))/23 = 1.78878850537960654295...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)).

Programs

  • Magma
    (27+10*Sqrt(2))/23; // G. C. Greubel, Jan 27 2018
  • Mathematica
    RealDigits[(27 + 10*Sqrt[2])/23, 10, 100][[1]] (* G. C. Greubel, Jan 28 2018 *)
  • PARI
    (27+10*sqrt(2))/23 \\ G. C. Greubel, Jan 27 2018
    

A156572 Squares of the form k^2+(k+23)^2 with integer k.

Original entry on oeis.org

289, 529, 1369, 4225, 13225, 42025, 139129, 444889, 1423249, 4721929, 15108769, 48344209, 160402225, 513249025, 1642275625, 5448949489, 17435353849, 55789022809, 185103876169, 592288777609, 1895184495649, 6288082836025
Offset: 1

Views

Author

Klaus Brockhaus, Feb 11 2009

Keywords

Comments

Square roots of k^2+(k+17)^2 are in A156567, values k are in A118337.

Examples

			4225 = 65^2 is of the form k^2+(k+23)^2 with k = 33: 33^2+56^2 = 4225. Hence 4225 is in the sequence.
		

Crossrefs

Cf. A156567, A156575 (first trisection), A156573 (second trisection), A156574 (third trisection).
Cf. A118337, A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)), A156571 (decimal expansion of (27+10*sqrt(2))/23), A157472 (decimal expansion of (627+238*sqrt(2))/23^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,34,-34,0,-1,1}, {289,529,1369,4225,13225,42025,139129}, 30] (* Harvey P. Dale, Mar 21 2020 *)
  • PARI
    {forstep(n=-8, 1800000, [1, 3], if(issquare(a=2*n*(n+23)+529), print1(a, ",")))}
    
  • Sage
    def f(n,p,q): return p*chebyshev_U(n,17) - q*chebyshev_U(n-1,17)
    def a(n):
        if (n%3==0): return -289*bool(n==0) + (1/4)*(529 + 3*f(n/3, 209, 5457))
        elif (n%3==1): return (1/4)*(529 + 3*f((n-1)/3, 209, 1649))
        else: return (1/4)*(529 + 3*f((n-2)/3, 529, 529))
    [a(n) for n in (1..30)] # G. C. Greubel, Jan 04 2022

Formula

a(n) = 34*a(n-3) - a(n-6) - 4232 for n > 6; a(1)=289, a(2)=529, a(3)=1369, a(4)=4225, a(5)=13225, a(6)=42025.
a(n) = A156567(n)^2.
G.f.: x*(289 +240*x +840*x^2 -6970*x^3 +840*x^4 +240*x^5 +289*x^6)/((1-x)*(1 -34*x^3 +x^6)).
Limit_{n -> infinity} a(n)/a(n-3) = 17 + 12*sqrt(2).
Limit_{n -> infinity} a(n)/a(n-1) = ((627 + 238*sqrt(2))/23^2)^2 for n mod 3 = 1.
Limit_{n -> infinity} a(n)/a(n-1) = ((27 + 10*sqrt(2))/23)^2 for n mod 3 = {0, 2}.
a(n) = -289*[n=0] + (529/4) + (3/4)*( f(n/3, 209, 5457)*(n mod 3 = 1) + f((n-1)/3, 209, 1649)*(n mod 3 = 1) + f((n-2)/2, 529, 529)*(n mod 3 = 2) ), where f(n, p, q) = p*ChebyshevU(n, 17) - q*ChebyshevU(n-1, 17). - G. C. Greubel, Jan 04 2022

Extensions

Revised by Klaus Brockhaus, Feb 16 2009
G.f. corrected, third comment and cross-references edited by Klaus Brockhaus, Sep 22 2009

A156568 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1)=23, a(2)=115.

Original entry on oeis.org

23, 115, 667, 3887, 22655, 132043, 769603, 4485575, 26143847, 152377507, 888121195, 5176349663, 30169976783, 175843511035, 1024891089427, 5973503025527, 34816127063735, 202923259356883, 1182723429077563
Offset: 1

Views

Author

Klaus Brockhaus, Feb 11 2009, Feb 16 2009

Keywords

Crossrefs

Second trisection of A156567. Equals 23*A001653.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156569, A156570.

Programs

  • PARI
    {m=19; v=concat([23, 115], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = 23*((2+sqrt(2))*(3-2*sqrt(2))^n +(2-sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: 23*x*(1-x)/(1-6*x+x^2). [corrected by Klaus Brockhaus, Sep 22 2009]
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2).

A156569 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1)=37, a(2)=205.

Original entry on oeis.org

37, 205, 1193, 6953, 40525, 236197, 1376657, 8023745, 46765813, 272571133, 1588660985, 9259394777, 53967707677, 314546851285, 1833313400033, 10685333548913, 62278687893445, 362986793811757, 2115642074977097
Offset: 1

Views

Author

Klaus Brockhaus, Feb 11 2009, Feb 16 2009

Keywords

Crossrefs

Third trisection of A156567.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156568, A156570.

Programs

  • Mathematica
    LinearRecurrence[{6,-1},{37,205},30] (* Harvey P. Dale, Aug 18 2014 *)
  • PARI
    {m=19; v=concat([37, 205], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = ((34+7*sqrt(2))*(3-2*sqrt(2))^n+(34-7*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(37-17*x)/(1-6*x+x^2). [corrected by Klaus Brockhaus, Sep 22 2009]
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2).

A156570 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1)=17, a(2)=65.

Original entry on oeis.org

17, 65, 373, 2173, 12665, 73817, 430237, 2507605, 14615393, 85184753, 496493125, 2893773997, 16866150857, 98303131145, 572952636013, 3339412684933, 19463523473585, 113441728156577, 661186845465877, 3853679344638685
Offset: 1

Views

Author

Klaus Brockhaus, Feb 11 2009, Feb 16 2009

Keywords

Comments

lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2).

Crossrefs

First trisection of A156567.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156568, A156569.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((74+47*r2)*(3-2*r2)^n+(74-47*r2)*(3+2*r2)^n)/4: n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ];
    
  • PARI
    {m=20; v=concat([17, 65], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = ((74+47*sqrt(2))*(3-2*sqrt(2))^n+(74-47*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(17-37*x)/(1-6*x+x^2).

Extensions

G.f. corrected by Klaus Brockhaus, Sep 22 2009

A157472 Decimal expansion of (627 + 238*sqrt(2))/23^2.

Original entry on oeis.org

1, 8, 2, 1, 5, 1, 7, 6, 3, 2, 9, 7, 6, 9, 3, 1, 2, 3, 1, 7, 8, 6, 0, 1, 4, 9, 6, 4, 7, 6, 7, 3, 1, 2, 1, 7, 9, 0, 1, 6, 2, 2, 2, 8, 8, 5, 3, 3, 0, 2, 7, 1, 5, 3, 3, 8, 6, 7, 7, 6, 8, 9, 5, 5, 8, 4, 4, 6, 0, 1, 7, 5, 7, 7, 9, 5, 8, 0, 6, 1, 9, 1, 3, 9, 2, 0, 4, 5, 8, 0, 9, 3, 9, 5, 0, 4, 4, 7, 9, 0, 7, 5, 7, 9, 0
Offset: 1

Views

Author

Klaus Brockhaus, Mar 12 2009

Keywords

Examples

			(627 + 238*sqrt(2))/23^2 = 1.82151763297693123178...
		

Crossrefs

Cf. A118337, A156567, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156571 (decimal expansion of (27+10*sqrt(2))/23).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (627+238*sqrt(2))/23^2; // G. C. Greubel, Aug 17 2018
  • Mathematica
    RealDigits[(627+238Sqrt[2])/23^2,10,120][[1]] (* Harvey P. Dale, Feb 03 2015 *)
  • PARI
    (627 + 238*sqrt(2))/23^2 \\ G. C. Greubel, Aug 17 2018
    

Formula

Equals (34 + 7*sqrt(2))/(34 - 7*sqrt(2)) = (3+2*sqrt(2))*(10- 2*sqrt(2) )^2/(10+2*sqrt(2))^2.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 0, where b is A118337.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 1, where b is A156567.
Showing 1-7 of 7 results.