cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157474 a(n) = 16n^2 + n.

Original entry on oeis.org

17, 66, 147, 260, 405, 582, 791, 1032, 1305, 1610, 1947, 2316, 2717, 3150, 3615, 4112, 4641, 5202, 5795, 6420, 7077, 7766, 8487, 9240, 10025, 10842, 11691, 12572, 13485, 14430, 15407, 16416, 17457, 18530, 19635, 20772, 21941, 23142, 24375, 25640
Offset: 1

Views

Author

Vincenzo Librandi, Mar 01 2009

Keywords

Comments

The identity (2048*n^2+128*n+1)^2 - (16*n^2+n)*(512*n+16)^2 = 1 can be written as A157476(n)^2 - a(n)*A157475(n)^2 = 1 (see also second comment in A157476).
Sequence found by reading the line from 17, in the direction 17, 66,... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Programs

  • Magma
    [16*n^2 + n: n in [1..40]]; // Vincenzo Librandi, Jan 01 2015
  • Mathematica
    Table[16n^2+n,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{17,66,147},50] (* Harvey P. Dale, Nov 08 2011 *)
    CoefficientList[Series[(17 + 14 x + 3 x^2 - 3 x^3 + x^4) / (1-x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 01 2015 *)
  • PARI
    a(n)=16*n^2+n \\ Charles R Greathouse IV, Feb 09 2012
    

Formula

a(n) = A173511(2*n). - Reinhard Zumkeller, Feb 20 2010
a(1)=17, a(2)=66, a(3)=147, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Nov 08 2011
G.f.: x*(17 + 14*x + 3*x^2 - 3*x^3 + x^4)/(1-x)^3. - Vincenzo Librandi, Jan 01 2015

Extensions

Comment rewritten by Bruno Berselli, Aug 22 2011