cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A173511 a(n) = 4*n^2 + floor(n/2).

Original entry on oeis.org

0, 4, 17, 37, 66, 102, 147, 199, 260, 328, 405, 489, 582, 682, 791, 907, 1032, 1164, 1305, 1453, 1610, 1774, 1947, 2127, 2316, 2512, 2717, 2929, 3150, 3378, 3615, 3859, 4112, 4372, 4641, 4917, 5202, 5494, 5795, 6103, 6420, 6744, 7077, 7417, 7766, 8122
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 20 2010

Keywords

Examples

			a(6) = 147; 4(6)^2 + floor(6/3) = 144 + 3 = 147.
		

Crossrefs

Programs

Formula

a(n) = floor((2*n + 1/8)^2).
a(n+1) - a(n) = A173512(n).
a(n) = A002943(n) - A007494(n) = A007742(n) - A110654(n).
a(2*n) = A157474(n) for n>0.
From - R. J. Mathar, Feb 21 2010: (Start)
a(n)= 2*a(n-1) -2*a(n-3) +a(n-4).
G.f.: -x*(4+9*x+3*x^2)/((1+x)*(x-1)^3). (End)
E.g.f.: (x*(8*x + 9)*cosh(x) + (8*x^2 + 9*x - 1)*sinh(x))/2. - Stefano Spezia, Apr 24 2024

A157475 a(n) = 512n + 16.

Original entry on oeis.org

528, 1040, 1552, 2064, 2576, 3088, 3600, 4112, 4624, 5136, 5648, 6160, 6672, 7184, 7696, 8208, 8720, 9232, 9744, 10256, 10768, 11280, 11792, 12304, 12816, 13328, 13840, 14352, 14864, 15376, 15888, 16400, 16912, 17424, 17936, 18448, 18960
Offset: 1

Views

Author

Vincenzo Librandi, Mar 01 2009

Keywords

Comments

The identity (2048*n^2+128*n+1)^2-(16*n^2+n)*(512*n+16)^2=1 can be written as A157476(n)^2-A157474(n)*a(n)^2=1 (see also second comment in A157476). [rewritten by Bruno Berselli, Aug 22 2011]

Crossrefs

Programs

  • Mathematica
    512*Range[40]+16 (* or *) LinearRecurrence[{2,-1},{528,1040},40] (* Harvey P. Dale, Dec 07 2011 *)

Formula

G.f.: 16*x*(33-x)/(1-x)^2. - Bruno Berselli, Aug 22 2011
a(1)=528, a(2)=1040, a(n) = 2*a(n-1)-a(n-2). - Harvey P. Dale, Dec 07 2011

A157476 a(n) = 2048n^2 + 128n + 1.

Original entry on oeis.org

2177, 8449, 18817, 33281, 51841, 74497, 101249, 132097, 167041, 206081, 249217, 296449, 347777, 403201, 462721, 526337, 594049, 665857, 741761, 821761, 905857, 994049, 1086337, 1182721, 1283201, 1387777, 1496449, 1609217, 1726081, 1847041
Offset: 1

Views

Author

Vincenzo Librandi, Mar 01 2009

Keywords

Comments

The identity (2048*n^2+128*n+1)^2-(16*n^2+n)*(512*n+16)^2=1 can be written as a(n)^2-A157474(n)*A157475(n)^2=1. [rewritten by Bruno Berselli, Aug 22 2011]
This is the case s=4 of the identity (8*n^2*s^4+8*n*s^2+1)^2 - (n^2*s^2+n)*(8*n*s^3+4*s)^2 = 1. - Bruno Berselli, Jan 25 2012

Crossrefs

Programs

  • Mathematica
    Table[2048n^2+128n+1,{n,30}] (* or *) LinearRecurrence[{3,-3,1},{2177,8449,18817},30] (* Harvey P. Dale, Aug 15 2011 *)
  • PARI
    a(n)=2048*n^2+128*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

From Harvey P. Dale, Aug 15 2011: (Start)
G.f.: x*(-x^2-1918*x-2177)/(x-1)^3.
a(1)=2177, a(2)=8449, a(3)=18817, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). (End)

A157716 One-eighth of triangular numbers (integers only).

Original entry on oeis.org

0, 15, 17, 62, 66, 141, 147, 252, 260, 395, 405, 570, 582, 777, 791, 1016, 1032, 1287, 1305, 1590, 1610, 1925, 1947, 2292, 2316, 2691, 2717, 3122, 3150, 3585, 3615, 4080, 4112, 4607, 4641, 5166, 5202, 5757, 5795, 6380, 6420, 7035, 7077, 7722, 7766, 8441
Offset: 1

Views

Author

Keywords

Comments

From Lamine Ngom, Oct 27 2020: (Start)
Numbers of the form (4*k)^2-k (A157446) or (4*k)^2+k (A157474).
Also numbers k such that 1+64*k is a square. (End)
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^(32*n))*(1 - q^(32*n-15))*(1 - q^(32*n-17)) = 1 - q^15 - q^17 + q^62 + q^66 - q^141 - q^147 + + - - .... - Peter Bala, Dec 24 2024

Examples

			The first three members of A000217 that are divisible by 8 are A000217(0), A000217(15) and A000217(16), so a(1) = A000217(0)/8 = 0, a(2) = A000217(15)/8 = 15, a(3) = A000217(16)/8 = 17.
		

Crossrefs

Programs

  • Maple
    seq((2*n-1 + 7/8*(-1)^n)^2 - 1/64, n = 1 .. 1000); # Robert Israel, Apr 20 2014
  • Mathematica
    Array[(2 # - 1 + 7/8*(-1)^#)^2 - 1/64 &, 46] (* or *)
    Rest@ CoefficientList[Series[x^2*(15 + 2 x + 15 x^2)/((1 + x)^2*(1 - x)^3), {x, 0, 46}], x] (* Michael De Vlieger, Nov 05 2020 *)

Formula

G.f.: x^2*(15+2*x+15*x^2)/((1+x)^2*(1-x)^3 ). [Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; checked and corrected by R. J. Mathar, Sep 16 2009]
a(n) = (2*n-1 + 7/8*(-1)^n)^2 -1/64. - Robert Israel, Apr 20 2014
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Wesley Ivan Hurt, Nov 10 2020
Sum_{n>=2} 1/a(n) = 16 - (sqrt(2*(2+sqrt(2))) + sqrt(2) + 1)*Pi. - Amiram Eldar, Mar 17 2022

Extensions

Definition edited by N. J. A. Sloane, Mar 08 2009
Showing 1-4 of 4 results.