cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A157836 Triangle read by rows where T(n,k) is the number of factorizations of (n+1)! into k distinct factors.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 14, 28, 13, 1, 1, 29, 103, 95, 24, 1, 1, 47, 273, 448, 249, 41, 1, 1, 79, 725, 1897, 1837, 671, 74, 1, 1, 134, 1876, 7301, 10856, 6780, 1686, 127, 1, 1, 269, 5791, 31811, 65782, 59434, 24017, 3960, 197, 1, 1, 395, 12061, 92987, 272932, 362956, 232152, 69765, 8703, 323, 1
Offset: 1

Views

Author

Ray Chandler, Mar 07 2009

Keywords

Comments

n-th row has n terms; first and last term in each row = 1.

Examples

			Triangle begins:
2! 1
3! 1 1
4! 1 3 1
5! 1 7 7 1
6! 1 14 28 13 1
7! 1 29 103 95 24 1
8! 1 47 273 448 249 41 1
9! 1 79 725 1897 1837 671 74 1
10! 1 134 1876 7301 10856 6780 1686 127 1
11! 1 269 5791 31811 65782 59434 24017 3960 197 1
12! 1 395 12061 92987 272932 362956 232152 69765 8703 323 1
...
		

Crossrefs

A157612 gives row sums. A157672 gives 2nd column.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    D(p, n, sig)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(r=EulerT(v)); prod(i=1, #sig, r[sig[i]])/prod(i=1, #v, i^v[i]*v[i]!)}
    detail(sig)={my(m=vecsum(sig)+1,n=vecmax(sig), q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(y+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, sig), [1, n]); s*q[#q-j]*y^m)/(1+y))}
    row(n)={if(n<=1, [], Vecrev(detail(factor(n!)[,2])))}
    { for(n=1, 10, print(row(n+1))) } \\ Andrew Howroyd, Feb 01 2020

A344687 a(n) is the lowest nonnegative exponent k such that n!^k is the product of the divisors of n!.

Original entry on oeis.org

0, 1, 2, 4, 8, 15, 30, 48, 80, 135, 270, 396, 792, 1296, 2016, 2688, 5376, 7344, 14688, 20520, 30400, 48000, 96000, 121440, 170016, 266112, 338688, 458640, 917280, 1166400, 2332800, 2764800, 3932160, 6082560, 8211456, 9797760, 19595520, 30233088, 42550272
Offset: 1

Views

Author

Alex Sokolov, Aug 17 2021

Keywords

Comments

This sequence is a subsequence of A001222, because the product of divisors of n! is n^(d(n)/2) (where d(n) is the number of divisors of n), so a(n) = d(n!)/2.
For prime p, d(p!) = 2*d((p-1)!), so a(p) = 2*a(p-1).

Examples

			For n = 4, n! = 24 = 2^3 * 3, which has (3+1)*(1+1) = 8 divisors: {1,2,3,4,6,8,12,24} whose product is 331776 = (24)^4 = (4!)^4. So a(4) = 4.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Table[DivisorSigma[0,n!]/2,{n,2,39}]] (* Stefano Spezia, Aug 18 2021 *)
  • PARI
    a(n) = if (n==1, 0, numdiv(n!)/2); \\ Michel Marcus, Aug 18 2021
  • Python
    def a(n):
        d = {}
        for i in range(2, n+1):
            tmp = i
            j = 2
            while(tmp != 1):
                if(tmp % j == 0):
                    d.setdefault(j, 0)
                    tmp //= j
                    d[j] += 1
                else:
                    j += 1
        res = 1
        for i in d.values():
            res *= (i+1)
        return res // 2
    
  • Python
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A344687(n): return prod(e+1 for e in sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values())//2 # Chai Wah Wu, Jun 25 2022
    

Formula

a(n) = d(n!)/2 = A000005(A000142(n))/2 = A027423(n)/2 for n > 1.
a(n) = A157672(n-1) + 1 for all n >= 2.
Showing 1-2 of 2 results.