A157931 Numbers that are both the sum and the product of two primes.
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 38, 39, 46, 49, 55, 58, 62, 69, 74, 82, 85, 86, 91, 94, 106, 111, 115, 118, 122, 129, 133, 134, 141, 142, 146, 158, 159, 166, 169, 178, 183, 194, 201, 202, 206, 213, 214, 218, 226, 235, 253, 254, 259, 262, 265, 274, 278
Offset: 1
Examples
For the numbers up to 100, the solutions are 4 = (2+2) = (2*2); 6 = (3+3) = (2*3); 9 = (2+7) = (3*3); 10 = (3+7) = (2*5); 14 = (3+11) = (2*7); 15 = (2+13) = (3*5); 21 = (2+19) = (3*7); 22 = (3+19) = (2*11); 25 = (2+23) = (5*5); 26 = (3+23) = (2*13); 33 = (2+31) = (3*11); 34 = (3+31) = (2*17); 38 = (7+31) = (2*19); 39 = (2+37) = (3*13); 46 = (3+43) = (2*23); 49 = (2+47) = (7*7); 55 = (2+53) = (5*11); 58 = (5+53) = (2*29); 62 = (3+59) = (2*31); 69 = (2+67) = (3*23); 74 = (3+71) = (2*37); 82 = (3+79) = (2*41); 85 = (2+83) = (5*17); 86 = (3+83) = (2*43); 91 = (2+89) = (7*13); 94 = (5+89) = (2*47).
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 1096 terms from Robert G. Wilson v)
Crossrefs
Programs
-
Haskell
a157931 n = a157931_list !! (n-1) a157931_list = filter ((== 1) . a064911) a014091_list -- Reinhard Zumkeller, Oct 15 2014
-
Maple
isA014091 := proc(n) for i from 1 do p := ithprime(i) ; if p > n/2 then RETURN(false); fi; if isprime(n-p) then RETURN(true) ; fi; od: end: isA001358 := proc(n) RETURN(numtheory[bigomega](n) = 2) ; end: for n from 4 to 500 do if isA001358(n) and isA014091(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Mar 15 2009
-
Mathematica
fQ[n_] := Block[{k = 2}, While[k < n, If[ PrimeQ[n - k], Break[]]; k = NextPrime@k]; k + 1 < n]; semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; Select[ Range@ 295, fQ@# && semiPrimeQ@# &] (* Robert G. Wilson v, Mar 15 2009 *) Select[Union[Flatten[Table[Prime[i] + Prime[j], {i, 50}, {j, 50}]]], PrimeOmega[#] == 2 &] (* Alonso del Arte, Feb 08 2013 *) Union[Select[Total/@Tuples[Prime[Range[60]],2],PrimeOmega[#]==2&]] (* Harvey P. Dale, Jul 27 2015 *)
Formula
Extensions
Edited by N. J. A. Sloane, Mar 14 2009
Extended by R. J. Mathar and Robert G. Wilson v, Mar 15 2009
Comments