cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A014091 Numbers that are the sum of 2 primes.

Original entry on oeis.org

4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 52, 54, 55, 56, 58, 60, 61, 62, 63, 64, 66, 68, 69, 70, 72, 73, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 88, 90, 91, 92, 94, 96, 98
Offset: 1

Views

Author

Keywords

Comments

Sequence consists of all primes + 2 and, conjecturally (Goldbach), of all even integers larger than 2. The Goldbach conjecture is that every even number is the sum of two primes. - Emeric Deutsch, Jul 14 2004

Crossrefs

Complement = A014092.
Cf. A010051, A000040, A157931 (semiprimes).

Programs

  • Haskell
    a014091 n = a014091_list !! (n-1)
    a014091_list = filter (\x -> any ((== 1) . a010051) $
                          map (x -) $ takeWhile (< x) a000040_list) [1..]
    -- Reinhard Zumkeller, Oct 15 2014
  • Maple
    sort({seq(2+ithprime(j),j=1..21)} union {seq(2*k,k=2..ceil(ithprime(21)/2))}); # Emeric Deutsch, Jul 14 2004
  • Mathematica
    Take[ Union@ Flatten@ Table[ Prime@p + Prime@q, {p, 25}, {q, p}], 71] (* Robert G. Wilson v, Aug 31 2008 *)
  • PARI
    isA014091(n)= my(i,p); i=1; p=prime(i); while(pA014091(a), print(n," ",a); n++)) \\ R. J. Mathar, Aug 20 2006
    
  • PARI
    is(n)=if(n%2,isprime(n-2),n>2) \\ on Goldbach's conjecture; Charles R Greathouse IV, Oct 22 2013
    

Extensions

More terms from Robert G. Wilson v, Aug 31 2008

A158318 Primes p such that 5p-2 is prime.

Original entry on oeis.org

3, 5, 11, 17, 23, 47, 53, 59, 71, 89, 101, 113, 131, 137, 149, 173, 191, 197, 233, 239, 257, 311, 317, 347, 383, 401, 431, 443, 449, 467, 479, 509, 569, 593, 617, 641, 683, 719, 761, 773, 827, 857, 929, 941, 947, 1031, 1061, 1097, 1163, 1181, 1223, 1229
Offset: 1

Views

Author

Zak Seidov, Mar 16 2009

Keywords

Comments

Hence 5p are terms in A157931, A062721 and (except of 25) in A043326.

Crossrefs

Cf. A043326 Numbers n such that n is a product of two different primes and n-2 is prime, A062721 Numbers n such that n is a product of two primes and n-2 is prime, A157931 Numbers that are both the sum and the product of two primes.

Programs

  • Mathematica
    Select[Prime[Range[300]],PrimeQ[5#-2]&] (* Harvey P. Dale, Apr 10 2015 *)
  • PARI
    isok(p) = isprime(p) && isprime(5*p-2);  \\ Michel Marcus, Oct 16 2013

A100962 Numbers that can neither be written as the sum nor as the product of two primes.

Original entry on oeis.org

1, 2, 3, 11, 17, 23, 27, 29, 37, 41, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 107, 113, 117, 125, 127, 131, 135, 137, 147, 149, 157, 163, 167, 171, 173, 179, 189, 191, 197, 207, 211, 223, 227, 233, 239, 245, 251, 255, 257, 261, 263, 269, 275, 277, 281, 293, 297
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 24 2004

Keywords

Comments

Intersection of A014092 and A100959.

Crossrefs

Programs

  • Haskell
    a100962 n = a100962_list !! (n-1)
    a100962_list = filter ((== 0) . a064911) a014092_list
    -- Reinhard Zumkeller, Oct 15 2014

A167629 The odd composites c such that c=q*g*j*y/2 and q+g=j*y where q,g,j,y are distinct primes.

Original entry on oeis.org

105, 195, 231, 399, 627, 897, 935, 1023, 1443, 1581, 1729, 2465, 2915, 2967, 4123, 4301, 4623, 4715, 5487, 7055, 7685, 7881, 8099, 9717, 10707, 11339, 12099, 12995, 14993, 16377, 16383, 17353, 17423, 19599, 20213, 20915, 23779, 24963, 25327
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 07 2009

Keywords

Examples

			a(1) =  3 *  7 *  5 = 105 (q=3, g= 7, j=2, y=5)
a(2) = 13 *  3 *  5 = 195 (q=2, g=13, j=3, y=5)
a(3) =  3 * 11 *  7 = 231 (q=3, g=11, j=2, y=7)
a(4) = 19 *  3 *  7 = 329 (q=2, g=19, j=3, y=7)
a(5) =  3 * 19 * 11 = 627 (q=3, g=19, j=2, y=11)
		

Crossrefs

Programs

  • Python
    from sympy import primerange, primepi
    k_upto = 25327
    A167629, primeset = set(), set(primelist:= list(primerange(3, int(k_upto**0.5)+1)))
    for x in range (primepi(k_upto**(1/3))):
        limit, y = k_upto // (a:=primelist[x]), x
        while (b:= primelist[(y:=y+1)]) * (c1:=(a * b - 2)) <= limit:
            if c1 in primeset : A167629.add(a * b * c1)
            if (c2 := b * 2 - a) in primeset : A167629.add(a * b * c2)
        y -= 1
        while (b:= primelist[(y:=y+1)]) * (c2:=(b * 2 - a)) <= limit:
            if c2 in primeset : A167629.add(a * b * c2)
    print(A167629:=sorted(A167629)) # Karl-Heinz Hofmann, Jan 30 2025

Extensions

Corrected and extended by D. S. McNeil, Dec 10 2009

A167690 The even composites c such that c=q*g*j*y and q+g=j*y where q,g,j,y are primes.

Original entry on oeis.org

16, 54, 126, 210, 250, 390, 462, 686, 798, 1150, 1254, 1794, 1870, 2046, 2662, 2886, 3162, 3458, 4394, 4606, 4930, 5830, 5934, 8246, 8602, 9246, 9430, 9826, 10974, 13718, 14110, 15370, 15762, 16198, 19434, 21414, 22678, 24198, 24334, 25990
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 09 2009

Keywords

Examples

			a(1) = 2 * 2 * 2 * 2 =  16
a(2) = 3 * 3 * 2 * 3 =  54
a(3) = 2 * 7 * 3 * 3 = 126
a(4) = 3 * 7 * 2 * 5 = 210.
		

Crossrefs

Programs

  • Python
    from sympy import isprime, nextprime, integer_nthroot
    c_upto = 100000
    A167690, q, lim_q, lim_g = set(), 2, integer_nthroot(c_upto//2,3)[0], integer_nthroot(c_upto//3,2)[0]//2
    while (g:=q) <= lim_q:
        while g <= lim_g:
            fac = 2 * q * g
            for j in [2 * q - g, 2 * g - q, q * g - 2 ]:
                if isprime(j) and (an:= fac * j) < c_upto : A167690.add(an)
            g = nextprime(g)
        q = nextprime(q)
    print((A167690:=sorted(A167690))) # Karl-Heinz Hofmann, Feb 21 2025

Extensions

Corrected (250, 686, 1794 etc inserted, 9486, 15782 removed) by R. J. Mathar, May 30 2010

A173664 Sums of 2 primes that are not product of 2 primes.

Original entry on oeis.org

5, 7, 8, 12, 13, 16, 18, 19, 20, 24, 28, 30, 31, 32, 36, 40, 42, 43, 44, 45, 48, 50, 52, 54, 56, 60, 61, 63, 64, 66, 68, 70, 72, 73, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 103, 104, 105, 108, 109, 110, 112, 114, 116, 120, 124, 126
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 24 2010

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k;
          if n=1 then 5
          else for k from a(n-1)+1 do
                 if add (i[2], i=ifactors(k)[2])=2 then next fi;
                 if irem (k, 2)=0 or isprime (k-2) then break fi
               od; k
          fi
        end:
    seq (a(n), n=1..60);  # Alois P. Heinz, Nov 24 2010
  • Mathematica
    Select[Union[Flatten[Table[Prime[i] + Prime[j], {i, 25}, {j, 25}]]], PrimeOmega[#] != 2 &] (* Alonso del Arte, Feb 08 2013 *)
  • PARI
    is(n)=if(n%2,isprime(n-2)&&bigomega(n)!=2,n>2&&!isprime(n/2)) \\ above 4 * 10^18, conditional on the Goldbach conjecture Charles R Greathouse IV, Feb 09 2013

Formula

A014091 \ A001358. - R. J. Mathar, Nov 24 2010

Extensions

More terms from Alois P. Heinz, Nov 24 2010

A227030 Numbers that are neither the difference nor the product of two primes.

Original entry on oeis.org

7, 13, 19, 23, 31, 37, 43, 47, 53, 61, 63, 67, 73, 75, 79, 83, 89, 97, 103, 109, 113, 117, 127, 131, 139, 151, 153, 157, 163, 167, 173, 175, 181, 193, 199, 207, 211, 223, 229, 233, 241, 243, 245, 251, 257, 263, 271, 273, 277, 283, 285, 293, 297, 307, 313, 317
Offset: 1

Views

Author

Gerasimov Sergey, Jun 28 2013

Keywords

Crossrefs

Formula

Showing 1-7 of 7 results.